Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 16(9): 873-885, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38639375

RESUMO

Aim: This study aims to investigate the passive diffusion of protein kinase inhibitors through the blood-brain barrier (BBB) and to develop a model for their permeability prediction. Materials & methods: We used the parallel artificial membrane permeability assay to obtain logPe values of each of 34 compounds and calculated descriptors for these structures to perform quantitative structure-property relationship modeling, creating different regression models. Results: The logPe values have been calculated for all 34 compounds. Support vector machine regression was considered the most reliable, and CATS2D_09_DA, CATS2D_04_AA, B04[N-S] and F07[C-N] descriptors were identified as the most influential to passive BBB permeability. Conclusion: The quantitative structure-property relationship-support vector machine regression model that has been generated can serve as an efficient method for preliminary screening of BBB permeability of new analogs.


[Box: see text].


Assuntos
Barreira Hematoencefálica , Membranas Artificiais , Inibidores de Proteínas Quinases , Relação Quantitativa Estrutura-Atividade , Máquina de Vetores de Suporte , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Humanos , Permeabilidade/efeitos dos fármacos
2.
J Colloid Interface Sci ; 634: 300-313, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535166

RESUMO

HYPOTHESIS: Lipophilic cannabidiol can be solubilized in oil-in water nanoemulsions, which can then be impregnated into chitosan hydrogels forming another colloidal system that will facilitate cannabidiol's release. The delivery from both systems was compared, alongside structural and biological studies, to clarify the effect of the two carriers' structure on the release and toxicity of the systems. EXPERIMENTS: Oil-in-water nanoemulsions (NEs) and the respective nanoemulsion-filled chitosan hydrogels (NE/HGs) were formulated as carriers of cannabidiol (CBD). Size, polydispersity and stability of the NEs were evaluated and then membrane dynamics, shape and structure of both systems were investigated with EPR spin probing, SAXS and microscopy. Biocompatibility of the colloidal delivery systems was evaluated through cytotoxicity tests over normal human skin fibroblasts. An ex vivo permeation protocol using porcine ear skin was implemented to assess the release of CBD and its penetration through the skin. FINDINGS: Incorporation of the NEs in chitosan hydrogels does not significantly affect their structural properties as evidenced through SAXS, EPR and confocal microscopy. These findings indicate the successful development of a novel nanocarrier that preserves the NE structure with the CBD remaining encapsulated in the oil core while providing new rheological properties advantageous over NEs. Moreover, NE/HGs proved to be more efficient as a carrier for the release of CBD. Cell viability assessment revealed high biocompatibility of the proposed colloids.


Assuntos
Canabidiol , Quitosana , Humanos , Animais , Suínos , Hidrogéis/química , Espalhamento a Baixo Ângulo , Emulsões/química , Difração de Raios X , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA