Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Neurosci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729760

RESUMO

Essential tremor (ET), a movement disorder characterized by involuntary oscillations of the limbs during movement, remains to date not well understood. It has been recently suggested that the tremor originates from impaired delay compensation, affecting movement representation and online control. Here we tested this hypothesis directly with 24 ET patients (14 female; 10 male) and 28 neurologically intact (NI) human volunteers (17 female; 11 male) in an upper limb postural perturbation task. After maintaining their hand in a visual target, participants experienced perturbations of unpredictable direction and magnitude, and were instructed to counter the perturbation and steer their hand back to the starting position. In comparison with NI volunteers, ET patients' early muscular responses (Short and Long-Latency Responses, 20-50 ms and 50-100 ms respectively) were preserved or even slightly increased. However, they exhibited perturbation-dependent deficits when stopping and stabilizing their hand in the final target supporting the hypothesis that the tremor was generated by the feedback controller. We show in a computational model that errors in delay compensation accumulating over time produced the same small increase in initial feedback response followed by oscillations that scaled with the perturbation magnitude as observed in ET population. Our experimental results therefore validate the computational hypothesis that inaccurate delay compensation in long-latency pathways could be the origin of the tremor.Significance Statement Essential Tremor origin remains poorly understood. In the present study, we focused on motor impairments associated with feedback control. Following a mechanical perturbation applied to their arm, patients' short and initial long-latency stretch responses were preserved. However, we observed clear impairments during the stabilization phase that scaled with the perturbation magnitude. These results were reproduced in a computational model where delay compensation was inaccurate, suggesting that the origin of the tremor may lie in an underestimation of the delays impacting the internal monitoring of the motor commands.

2.
Sci Adv ; 10(3): eadh9344, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232162

RESUMO

During object manipulation, humans adjust the grip force to friction, such that slippery objects are squeezed more firmly than sticky ones. This essential mechanism to keep a stable grasp relies on feedback from tactile afferents innervating the fingertips, that are sensitive to local skin strains. To test if this feedback originates from the skin-object interface, we asked participants to perform a grip-lift task with an instrumented object able to monitor skin strains at the contact through transparent plates of different frictions. We observed that, following an unbeknown change in plate across trials, participants adapted their grip force to friction. After switching from high to low friction, we found a significant increase in strain inside the contact arising ~100 ms before the modulation of grip force, suggesting that differences in strain patterns before lift-off are used by the nervous system to quickly adjust the force to the frictional properties of manipulated objects.


Assuntos
Dedos , Tato , Humanos , Fricção , Dedos/inervação , Dedos/fisiologia , Tato/fisiologia , Pele , Força da Mão/fisiologia
3.
Curr Opin Neurobiol ; 83: 102810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37950956

RESUMO

Closed-loop models of movement control have attracted growing interest in how the nervous system transforms sensory information into motor commands, and several brain structures have been identified as neural substrates for these computational operations. Recently, several studies have focused on how these models need to be updated when environmental parameters change. Current evidence suggests that when the task changes, rapid control updates enable flexible modifications of current actions and online decisions. At the same time, when movement dynamics change, humans use different strategies based on a combination of adaptation and modulation of controller sensitivity to exogenous perturbations (robust control). This review proposes a unified framework to capture these results based on online estimation of model parameters with dynamic updates in control. The reviewed studies also identify the time scales of associated behavioral mechanisms to guide future research on the neural basis of movement control.


Assuntos
Encéfalo , Modelos Neurológicos , Humanos , Movimento/fisiologia
4.
J Neuroeng Rehabil ; 20(1): 156, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974229

RESUMO

BACKGROUND: In the recent past, wearable devices have been used for gait rehabilitation in patients with Parkinson's disease. The objective of this paper is to analyze the outcome of a wearable hip orthosis whose assistance adapts in real time to the patient's gait kinematics via adaptive oscillators. In particular, this study focuses on a metric characterizing natural gait variability, i.e., the level of long-range autocorrelations (LRA) in series of stride durations. METHODS: Eight patients with Parkinson's disease (Hoehn and Yahr stages 1[Formula: see text]2.5) performed overground gait training three times per week for four consecutive weeks, assisted by a wearable hip orthosis. Gait was assessed based on performance metrics such as the hip range of motion, speed, stride length and duration, and the level of LRA in inter-stride time series assessed using the Adaptive Fractal Analysis. These metrics were measured before, directly after, and 1 month after training. RESULTS: After training, patients increased their hip range of motion, their gait speed and stride length, and decreased their stride duration. These improvements were maintained 1 month after training. Regarding long-range autocorrelations, the population's behavior was standardized towards a metric closer to the one of healthy individuals after training, but with no retention after 1 month. CONCLUSION: This study showed that an overground gait training with adaptive robotic assistance has the potential to improve key gait metrics that are typically affected by Parkinson's disease and that lead to higher prevalence of fall. TRIAL REGISTRATION: ClinicalTrials.gov Identifer NCT04314973. Registered on 11 April 2020.


Assuntos
Exoesqueleto Energizado , Doença de Parkinson , Robótica , Humanos , Doença de Parkinson/reabilitação , Marcha , Terapia por Exercício , Caminhada
5.
J Neurophysiol ; 130(5): 1092-1102, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791388

RESUMO

Essential tremor (ET) is a neurological disorder characterized by involuntary oscillations of the limbs. Previous studies have hypothesized that ET is a cerebellar disorder and reported impairments in motor adaptation. However, recent advances have highlighted that motor adaptation involves several components linked to anticipation and control, all dependent on cerebellum. We studied the contribution of both components in adaptation to better understand the adaptation impairments observed in ET from a behavioral perspective. To address this question, we investigated behavioral markers of adaptation in ET patients (n = 20) and age-matched neurologically intact volunteers (n = 20) in saccadic and upper limb adaptation tasks, probing compensation for target jumps and for velocity-dependent force fields, respectively. We found that both groups adapted their movements to the novel contexts; however, ET patients adapted to a lesser extent compared with neurologically intact volunteers. Importantly, components of the movement linked to anticipation were preserved in the ET group, whereas components linked to movement execution appeared responsible for the adaptation deficit in this group. Altogether, our results suggest that execution deficits may be a specific functional consequence of the alteration of neural pathways associated with ET.NEW & NOTEWORTHY We tested essential tremor patients' adaptation abilities in classical tasks including saccadic adaptation to target jumps and reaching adaptation to force field disturbances. Patients' adaptation was present but impaired in both tasks. Interestingly, the deficits were mainly present during movement execution, whereas the anticipatory components of movements were similar to neurologically intact volunteers. These findings reinforce the hypothesis of a cerebellar origin for essential tremor and detail the motor adaptation impairments previously found in this disorder.


Assuntos
Tremor Essencial , Humanos , Movimento , Extremidade Superior , Cerebelo
6.
PLoS Comput Biol ; 19(9): e1011493, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37756355

RESUMO

Humans consider the parameters linked to movement goal during reaching to adjust their control strategy online. Indeed, rapid changes in target structure or disturbances interfering with their initial plan elicit rapid changes in behavior. Here, we hypothesize that these changes could result from the continuous use of a decision variable combining motor and cognitive components. We combine an optimal feedback controller with a real-time evaluation of the expected cost-to-go, which considers target- and movement-related costs, in a common theoretical framework. This model reproduces human behaviors in presence of changes in the target structure occurring during movement and of online decisions to flexibly change target following external perturbations. It also predicts that the time taken to decide to select a novel goal after a perturbation depends on the amplitude of the disturbance and on the rewards of the different options, which is a direct result of the continuous monitoring of the cost-to-go. We show that this result was present in our previously collected dataset. Together our developments point towards a continuous evaluation of the cost-to-go during reaching to update control online and make efficient decisions about movement goal.


Assuntos
Movimento , Desempenho Psicomotor , Humanos , Retroalimentação Sensorial , Recompensa
7.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37596049

RESUMO

Previous research has questioned whether motor adaptation is shaped by an optimal combination of multisensory error signals. Here, we expanded on this work by investigating how the use of visual and somatosensory error signals during online correction influences single-trial adaptation. To this end, we exposed participants to a random sequence of force-field perturbations and recorded their corrective responses as well as the after-effects exhibited during the subsequent unperturbed movement. In addition to the force perturbation, we artificially decreased or increased visual errors by multiplying hand deviations by a gain smaller or larger than one. Corrective responses to the force perturbation clearly scaled with the size of the visual error, but this scaling did not transfer one-to-one to motor adaptation and we observed no consistent interaction between limb and visual errors on adaptation. However, reducing visual errors during perturbation led to a small reduction of after-effects and this residual influence of visual feedback was eliminated when we instructed participants to control their hidden hand instead of the visual hand cursor. Taken together, our results demonstrate that task instructions and the need to correct for errors during perturbation are important factors to consider if we want to understand how the sensorimotor system uses and combines multimodal error signals to adapt movements.


Assuntos
Ácido Dioctil Sulfossuccínico , Mãos , Humanos , Retroalimentação , Retroalimentação Sensorial , Movimento , Fenolftaleína
8.
Artigo em Inglês | MEDLINE | ID: mdl-37022872

RESUMO

Gait variability of healthy adults exhibits Long-Range Autocorrelations (LRA), meaning that the stride interval at any time statistically depends on previous gait cycles; and this dependency spans over several hundreds of strides. Previous works have shown that this property is altered in patients with Parkinson's disease, such that their gait pattern corresponds to a more random process. Here, we adapted a model of gait control to interpret the reduction in LRA that characterized patients in a computational framework. Gait regulation was modeled as a Linear-Quadratic-Gaussian control problem where the objective was to maintain a fixed velocity through the coordinated regulation of stride duration and length. This objective offers a degree of redundancy in the way the controller can maintain a given velocity, resulting in the emergence of LRA. In this framework, the model suggested that patients exploited less the task redundancy, likely to compensate for an increased stride-to-stride variability. Furthermore, we used this model to predict the potential benefit of an active orthosis on the gait pattern of patients. The orthosis was embedded in the model as a low-pass filter on the series of stride parameters. We show in simulations that, with a suitable level of assistance, the orthosis could help patients recovering a gait pattern with LRA comparable to that of healthy controls. Assuming that the presence of LRA in a stride series is a marker of healthy gait control, our study provides a rationale for developing gait assistance technology to reduce the fall risk associated with Parkinson's disease.

9.
eNeuro ; 10(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941058

RESUMO

Humans exhibit lateralization such that most individuals typically show a preference for using one arm over the other for a range of movement tasks. The computational aspects of movement control leading to these differences in skill are not yet understood. It has been hypothesized that the dominant and nondominant arms differ in terms of the use of predictive or impedance control mechanisms. However, previous studies present confounding factors that prevented clear conclusions: either the performances were compared across two different groups, or in a design in which asymmetrical transfer between limbs could take place. To address these concerns, we studied a reach adaptation task during which healthy volunteers performed movements with their right and left arms in random order. We performed two experiments. Experiment 1 (18 participants) focused on adaptation to the presence of a perturbing force field (FF) and experiment 2 (12 participants) focused on rapid adaptations in feedback responses. The randomization of the left and right arm led to simultaneous adaptation, allowing us to study lateralization in single individuals with symmetrical and minimal transfer between limbs. This design revealed that participants could adapt control of both arms, with both arms showing similar performance levels. The nondominant arm initially presented a slightly worst performance but reached similar levels of performance in late trials. We also observed that the nondominant arm showed a different control strategy compatible with robust control when adapting to the force field perturbation. EMG data showed that these differences in control were not caused by differences in co-contraction across the arms. Thus, instead of assuming differences in predictive or reactive control schemes, our data show that in the context of optimal control, both arms can adapt, and that the nondominant arm uses a more robust, model-free strategy likely to compensate for less accurate internal representations of movement dynamics.


Assuntos
Lateralidade Funcional , Desempenho Psicomotor , Humanos , Adaptação Fisiológica/fisiologia , Extremidades , Lateralidade Funcional/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia
10.
PLoS Comput Biol ; 18(10): e1009966, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36306317

RESUMO

Judging by the breadth of our motor repertoire during daily activities, it is clear that learning different tasks is a hallmark of the human motor system. However, for reaching adaptation to different force fields, the conditions under which this is possible in laboratory settings have remained a challenging question. Previous work has shown that independent movement representations or goals enabled dual adaptation. Considering the importance of force feedback during limb control, here we hypothesised that independent cues delivered by means of background loads could support simultaneous adaptation to various velocity-dependent force fields, for identical kinematic plan and movement goal. We demonstrate in a series of experiments that indeed healthy adults can adapt to opposite force fields, independently of the direction of the background force cue. However, when the cue and force field were in the same direction but differed by heir magnitude, the formation of different motor representations was still observed but the associated mechanism was subject to increased interference. Finally, we highlight that this paradigm allows dissociating trial-by-trial adaptation from online feedback adaptation, as these two mechanisms are associated with different time scales that can be identified reliably and reproduced in a computational model.


Assuntos
Sinais (Psicologia) , Aprendizagem , Adulto , Humanos , Adaptação Fisiológica , Movimento , Fenômenos Biomecânicos , Desempenho Psicomotor
11.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35835589

RESUMO

A hallmark of human reaching movements is that they are appropriately tuned to the task goal and to the environmental context. This was demonstrated by the way humans flexibly respond to mechanical and visual perturbations that happen during movement. Furthermore, it was previously showed that the properties of goal-directed control can change within a movement, following abrupt changes in the goal structure. Such online adjustment was characterized by a modulation of feedback gains following switches in target shape. However, it remains unknown whether the underlying mechanism merely switches between prespecified policies, or whether it results from continuous and potentially dynamic adjustments. Here, we address this question by investigating participants' feedback control strategies in presence of various changes in target width during reaching. More specifically, we studied whether the feedback responses to mechanical perturbations were sensitive to the rate of change in target width, which would be inconsistent with the hypothesis of a single, discrete switch. Based on movement kinematics and surface EMG data, we observed a modulation of feedback response clearly dependent on dynamical changes in target width. Together, our results demonstrate a continuous and online transformation of task-related parameters into suitable control policies.


Assuntos
Movimento , Desempenho Psicomotor , Fenômenos Biomecânicos , Eletromiografia , Retroalimentação , Humanos , Movimento/fisiologia
12.
eNeuro ; 9(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35277452

RESUMO

Target reward influences motor planning strategies through modulation of movement vigor. Considering current theories of sensorimotor control suggesting that movement planning consists in selecting a goal-directed control strategy, we sought to investigate the influence of reward on feedback control. Here, we explored this question in three human reaching experiments. First, we altered the explicit reward associated with the goal target and found an overall increase in feedback gains for higher target rewards, highlighted by larger velocities, feedback responses to external loads, and background muscle activity. Then, we investigated whether the differences in target rewards across multiple goals impacted rapid motor decisions during movement. We observed idiosyncratic switching strategies dependent on both target rewards and, surprisingly, the feedback gains at perturbation onset: the more vigorous movements were less likely to switch to a new goal following perturbations. To gain further insight into a causal influence of the feedback gains on rapid motor decisions, we demonstrated that biasing the baseline activity and reflex gains by means of a background load evoked a larger proportion of target switches in the direction opposite to the background load associated with lower muscle activity. Together, our results demonstrate an impact of target reward on feedback control and highlight the competition between movement vigor and flexibility.


Assuntos
Desempenho Psicomotor , Recompensa , Retroalimentação , Humanos , Motivação , Movimento , Desempenho Psicomotor/fisiologia
13.
Brain Connect ; 12(2): 180-192, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34015966

RESUMO

Background: Functional connectivity quantifies the statistical dependencies between the activity of brain regions, measured using neuroimaging data such as functional magnetic resonance imaging (fMRI) blood-oxygenation-level dependent time series. The network representation of functional connectivity, called a functional connectome (FC), has been shown to contain an individual fingerprint allowing participants identification across consecutive testing sessions. Recently, researchers have focused on the extraction of these fingerprints, with potential applications in personalized medicine. Materials and Methods: In this study, we show that a mathematical operation denominated degree-normalization can improve the extraction of FC fingerprints. Degree-normalization has the effect of reducing the excessive influence of strongly connected brain areas in the whole-brain network. We adopt the differential identifiability framework and apply it to both original and degree-normalized FCs of 409 individuals from the Human Connectome Project, in resting-state and 7 fMRI tasks. Results: Our results indicate that degree-normalization systematically improves three fingerprinting metrics, namely differential identifiability, identification rate, and matching rate. Moreover, the results related to the matching rate metric suggest that individual fingerprints are embedded in a low-dimensional space. Discussion: The results suggest that low-dimensional functional fingerprints lie in part in weakly connected subnetworks of the brain and that degree-normalization helps uncovering them. This work introduces a simple mathematical operation that could lead to significant improvements in future FC fingerprinting studies.


Assuntos
Conectoma , Benchmarking , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Fatores de Tempo
14.
J Neurophysiol ; 127(2): 354-372, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34907796

RESUMO

Visual and proprioceptive feedback both contribute to perceptual decisions, but it remains unknown how these feedback signals are integrated together or consider factors such as delays and variance during online control. We investigated this question by having participants reach to a target with randomly applied mechanical and/or visual disturbances. We observed that the presence of visual feedback during a mechanical disturbance did not increase the size of the muscle response significantly but did decrease variance, consistent with a dynamic Bayesian integration model. In a control experiment, we verified that vision had a potent influence when mechanical and visual disturbances were both present but opposite in sign. These results highlight a complex process for multisensory integration, where visual feedback has a relatively modest influence when the limb is mechanically disturbed, but a substantial influence when visual feedback becomes misaligned with the limb.NEW & NOTEWORTHY Visual feedback is more accurate, but proprioceptive feedback is faster. How should you integrate these sources of feedback to guide limb movement? As predicted by dynamic Bayesian models, the size of the muscle response to a mechanical disturbance was essentially the same whether visual feedback was present or not. Only under artificial conditions, such as when shifting the position of a cursor representing hand position, can one observe a muscle response from visual feedback.


Assuntos
Retroalimentação Sensorial/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Objetivos , Humanos , Masculino , Pessoa de Meia-Idade , Interface Usuário-Computador , Adulto Jovem
15.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34465612

RESUMO

Savings have been described as the ability of healthy humans to relearn a previously acquired motor skill faster than the first time, which in the context of motor adaptation suggests that the learning rate in the brain could be adjusted when a perturbation is recognized. Alternatively, it has been argued that apparent savings were the consequence of a distinct process that instead of reflecting a change in the learning rate, revealed an explicit re-aiming strategy. Based on recent evidence that feedback adaptation may be central to both planning and control, we hypothesized that this component could genuinely accelerate relearning in human adaptation to force fields (FFs) during reaching. Consistent with our hypothesis, we observed that on re-exposure to a previously learned FF, the very first movement performed by healthy volunteers in the relearning context was better adapted to the external disturbance, and this occurred without any anticipation or cognitive strategy because the relearning session was started unexpectedly. We conclude that feedback adaptation is a medium by which the nervous system can genuinely accelerate learning across movements.


Assuntos
Adaptação Fisiológica , Desempenho Psicomotor , Retroalimentação , Humanos , Aprendizagem , Movimento
16.
iScience ; 24(7): 102821, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34345810

RESUMO

Besides relying heavily on sensory and reinforcement feedback, motor skill learning may also depend on the level of motivation experienced during training. Yet, how motivation by reward modulates motor learning remains unclear. In 90 healthy subjects, we investigated the net effect of motivation by reward on motor learning while controlling for the sensory and reinforcement feedback received by the participants. Reward improved motor skill learning beyond performance-based reinforcement feedback. Importantly, the beneficial effect of reward involved a specific potentiation of reinforcement-related adjustments in motor commands, which concerned primarily the most relevant motor component for task success and persisted on the following day in the absence of reward. We propose that the long-lasting effects of motivation on motor learning may entail a form of associative learning resulting from the repetitive pairing of the reinforcement feedback and reward during training, a mechanism that may be exploited in future rehabilitation protocols.

17.
Netw Neurosci ; 5(2): 591-613, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189379

RESUMO

Describing how the brain anatomical wiring contributes to the emergence of coordinated neural activity underlying complex behavior remains challenging. Indeed, patterns of remote coactivations that adjust with the ongoing task-demand do not systematically match direct, static anatomical links. Here, we propose that observed coactivation patterns, known as functional connectivity (FC), can be explained by a controllable linear diffusion dynamics defined on the brain architecture. Our model, termed structure-informed FC, is based on the hypothesis that different sets of brain regions controlling the information flow on the anatomical wiring produce state-specific functional patterns. We thus introduce a principled framework for the identification of potential control centers in the brain. We find that well-defined, sparse, and robust sets of control regions, partially overlapping across several tasks and resting state, produce FC patterns comparable to empirical ones. Our findings suggest that controllability is a fundamental feature allowing the brain to reach different states.

18.
J Neurophysiol ; 125(5): 1883-1898, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852821

RESUMO

Humans are able to perform very sophisticated reaching movements in a myriad of contexts based on flexible control strategies influenced by the task goal and environmental constraints such as obstacles. However, it remains unknown whether these control strategies can be adjusted online. The objective of this study was to determine whether the factors that determine control strategies during planning also modify the execution of an ongoing movement following sudden changes in task demand. More precisely, we investigated whether, and at which latency, feedback responses to perturbation loads followed the change in the structure of the goal target or environment. We changed the target width (square or rectangle) to alter the task redundancy, or the presence of obstacles to induce different constraints on the reach path, and assessed based on surface electromyography (EMG) recordings when the change in visual display altered the feedback response to mechanical perturbations. Task-related EMG responses were detected within 150 ms of a change in target shape. Considering visuomotor delays of ∼ 100 ms, these results suggest that it takes 50 ms to change control policy within a trial. An additional 30-ms delay was observed when the change in context involved sudden appearance or disappearance of obstacles. Overall, our results demonstrate that the control policy within a reaching movement is not static: contextual factors that influence movement planning also influence movement execution at surprisingly short latencies. Moreover, the additional 30 ms associated with obstacles suggests that these two types of changes may be mediated via distinct processes.NEW & NOTEWORTHY The present work demonstrates that the control strategies used to perform reaching movements are adjusted online when the structure of the target or the presence of obstacles are altered during movements. Thus, the properties of goal-directed reaching control are not simply selected during the planning stage of a movement prior to execution. Rather, they are dynamically and rapidly adjusted online, within ∼150 ms, according to changes in environment.


Assuntos
Função Executiva/fisiologia , Objetivos , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Fatores de Tempo , Adulto Jovem
19.
J Neurophysiol ; 125(4): 1223-1235, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502932

RESUMO

Perception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand (x, y) and joint (shoulder, elbow) coordinates. In hand coordinates, both models predicted larger medial-lateral than proximal-distal errors, although the model with both muscle groups predicted that biarticulars would reduce this bias. In contrast, the two models made significantly different predictions in joint coordinates. The model with only monoarticulars predicted that errors would be uniformly distributed because estimates of angles at each joint would be independent. In contrast, the model that included biarticulars predicted that errors would be coupled between the two joints, resulting in smaller errors for combinations of flexion or extension at both joints and larger errors for combinations of flexion at one joint and extension at the other joint. We also carried out two experiments to examine errors made by human subjects during an arm position matching task in which a robot passively moved one arm to different positions and the subjects moved their other arm to mirror-match each position. Errors in hand coordinates were similar to those predicted by both models. Critically, however, errors in joint coordinates were only similar to those predicted by the model with monoarticulars and biarticulars. These results highlight how biarticulars influence perceptual estimates of limb position by helping to minimize medial-lateral errors.NEW & NOTEWORTHY It is unclear how sensory information from muscle spindles located within muscles spanning multiple joints influences perception of body position and motion. We address this issue by comparing errors in estimating limb position made by human subjects with predicted errors made by two musculoskeletal models, one with only monoarticulars and one with both monoarticulars and biarticulars. We provide evidence that biarticulars produce coupling of errors between joints, which help to reduce errors.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Propriocepção/fisiologia , Desempenho Psicomotor/fisiologia , Extremidade Superior/fisiologia , Adulto , Idoso , Feminino , Mãos/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fusos Musculares/fisiologia , Adulto Jovem
20.
Front Hum Neurosci ; 15: 742608, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35027886

RESUMO

Sensorimotor adaptation is a central function of the nervous system, as it allows humans and other animals to flexibly anticipate their interaction with the environment. In the context of human reaching adaptation to force fields, studies have traditionally separated feedforward (FF) and feedback (FB) processes involved in the improvement of behavior. Here, we review computational models of FF adaptation to force fields and discuss them in light of recent evidence highlighting a clear involvement of feedback control. Instead of a model in which FF and FB mechanisms adapt in parallel, we discuss how online adaptation in the feedback control system can explain both trial-by-trial adaptation and improvements in online motor corrections. Importantly, this computational model combines sensorimotor control and short-term adaptation in a single framework, offering novel perspectives for our understanding of human reaching adaptation and control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA