Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 91(6): 153, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25395674

RESUMO

FOXL2 loss of function in goats leads to the early transdifferentiation of ovaries into testes, then to the full sex reversal of XX homozygous mutants. By contrast, Foxl2 loss of function in mice induces an arrest of follicle formation after birth, followed by complete female sterility. In order to understand the molecular role of FOXL2 during ovarian differentiation in the goat species, putative FOXL2 target genes were determined at the earliest stage of gonadal sex-specific differentiation by comparing the mRNA profiles of XX gonads expressing the FOXL2 protein or not. Of these 163 deregulated genes, around two-thirds corresponded to testicular genes that were up-regulated when FOXL2 was absent, and only 19 represented female-associated genes, down-regulated in the absence of FOXL2. FOXL2 should therefore be viewed as an antitestis gene rather than as a female-promoting gene. In particular, the key testis-determining gene DMRT1 was found to be up-regulated ahead of SOX9, thus suggesting in goats that SOX9 primary up-regulation may require DMRT1. Overall, our results equated to FOXL2 being an antitestis gene, allowing us to propose an alternative model for the sex-determination process in goats that differs slightly from that demonstrated in mice.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Fatores de Transcrição Forkhead/genética , Genitália Feminina/metabolismo , Cabras/fisiologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição/genética , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/veterinária , Animais , Animais Geneticamente Modificados , Transdiferenciação Celular , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genitália Feminina/embriologia , Cabras/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Ovário/metabolismo , Processos de Determinação Sexual/genética , Testículo/metabolismo , Regulação para Cima
2.
PLoS One ; 7(9): e45727, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029204

RESUMO

BACKGROUND: MicroRNA (miRNA) are negative regulators of gene expression, capable of exerting pronounced influences upon the translation and stability of mRNA. They are potential regulators of normal mammary gland development and of the maintenance of mammary epithelial progenitor cells. This study was undertaken to determine the role of miR-30b on the establishment of a functional mouse mammary gland. miR-30b is a member of the miR-30 family, composed of 6 miRNA that are highly conserved in vertebrates. It has been suggested to play a role in the differentiation of several cell types. METHODOLOGY/PRINCIPAL FINDINGS: The expression of miR-30b was found to be regulated during mammary gland development. Transgenic mice overexpressing miR-30b in mammary epithelial cells were used to investigate its role. During lactation, mammary histological analysis of the transgenic mice showed a reduction in the size of alveolar lumen, a defect of the lipid droplets and a growth defect of pups fed by transgenic females. Moreover some mammary epithelial differentiated structures persisted during involution, suggesting a delay in the process. The genes whose expression was affected by the overexpression of miR-30b were characterized by microarray analysis. CONCLUSION/SIGNIFICANCE: Our data suggests that miR-30b is important for the biology of the mammary gland and demonstrates that the deregulation of only one miRNA could affect lactation and involution.


Assuntos
Lactação/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Animais , Sequência de Bases , Diferenciação Celular , Primers do DNA , Feminino , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
3.
PLoS One ; 7(1): e30073, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22272275

RESUMO

Natural mutations in the LIPH gene were shown to be responsible for hair growth defects in humans and for the rex short hair phenotype in rabbits. In this species, we identified a single nucleotide deletion in LIPH (1362delA) introducing a stop codon in the C-terminal region of the protein. We investigated the expression of LIPH between normal coat and rex rabbits during critical fetal stages of hair follicle genesis, in adults and during hair follicle cycles. Transcripts were three times less expressed in both fetal and adult stages of the rex rabbits than in normal rabbits. In addition, the hair growth cycle phases affected the regulation of the transcription level in the normal and mutant phenotypes differently. LIPH mRNA and protein levels were higher in the outer root sheath (ORS) than in the inner root sheath (IRS), with a very weak signal in the IRS of rex rabbits. In vitro transfection shows that the mutant protein has a reduced lipase activity compared to the wild type form. Our results contribute to the characterization of the LIPH mode of action and confirm the crucial role of LIPH in hair production.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Folículo Piloso/metabolismo , Lipase/genética , Pele/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Feminino , Genótipo , Cabelo/enzimologia , Cabelo/metabolismo , Folículo Piloso/enzimologia , Folículo Piloso/crescimento & desenvolvimento , Imuno-Histoquímica , Hibridização In Situ , Lipase/metabolismo , Masculino , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Fenótipo , Fosfolipases A1/genética , Fosfolipases A1/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Pele/enzimologia , Transfecção
4.
PLoS One ; 6(4): e19281, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21552526

RESUMO

The fur of common rabbits is constituted of 3 types of hair differing in length and diameter while that of rex animals is essentially made up of amazingly soft down-hair. Rex short hair coat phenotypes in rabbits were shown to be controlled by three distinct loci. We focused on the "r1" mutation which segregates at a simple autosomal-recessive locus in our rabbit strains. A positional candidate gene approach was used to identify the rex gene and the corresponding mutation. The gene was primo-localized within a 40 cM region on rabbit chromosome 14 by genome scanning families of 187 rabbits in an experimental mating scheme. Then, fine mapping refined the region to 0.5 cM (Z = 78) by genotyping an additional 359 offspring for 94 microsatellites present or newly generated within the first defined interval. Comparative mapping pointed out a candidate gene in this 700 kb region, namely LIPH (Lipase Member H). In humans, several mutations in this major gene cause alopecia, hair loss phenotypes. The rabbit gene structure was established and a deletion of a single nucleotide was found in LIPH exon 9 of rex rabbits (1362delA). This mutation results in a frameshift and introduces a premature stop codon potentially shortening the protein by 19 amino acids. The association between this deletion and the rex phenotype was complete, as determined by its presence in our rabbit families and among a panel of 60 rex and its absence in all 60 non-rex rabbits. This strongly suggests that this deletion, in a homozygous state, is responsible for the rex phenotype in rabbits.


Assuntos
Éxons/genética , Cabelo/anatomia & histologia , Lipase/genética , Fenótipo , Coelhos/anatomia & histologia , Coelhos/genética , Deleção de Sequência/genética , Animais , Mapeamento Cromossômico , Clonagem Molecular , Análise Mutacional de DNA , Regulação Enzimológica da Expressão Gênica , Cabelo/enzimologia
5.
J Gen Virol ; 91(Pt 2): 575-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19828762

RESUMO

Although susceptibility to scrapie is largely controlled by the PrP gene, the role of other genes that affect scrapie resistance in sheep is now confirmed. Following the detection of quantitative trait loci (QTL) on chromosomes 6 and 18 in a half-sib family with an ARQ/VRQ susceptible PrP genotype, the whole pedigree of a naturally infected flock was investigated to confirm these QTL regions in different PrP genotypes. The present study has allowed us to confirm the QTL on chromosome 18, and to demonstrate the QTL effects in several PrP genotypes.


Assuntos
Locos de Características Quantitativas , Scrapie/genética , Ovinos/genética , Animais , Mapeamento Cromossômico , Feminino , Predisposição Genética para Doença , Masculino , Linhagem , Proteínas PrPC/genética , Scrapie/patologia , Fatores de Tempo
6.
Genet Sel Evol ; 40(6): 663-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18990357

RESUMO

Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3-4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers). The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies) and on the selection strategies for improving scrapie resistance while carrying out selection for production traits.


Assuntos
Variação Genética , Proteínas PrPSc/genética , Scrapie/genética , Seleção Genética , Carneiro Doméstico/genética , Animais , Repetições de Microssatélites , Modelos Genéticos , Linhagem , Polimorfismo Genético , Scrapie/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA