Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(19): 13489-13493, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665508

RESUMO

Superhydrophobic materials have been shown to have many attractive properties, however, their functionality can easily be lost due to the failure of the air layer. For long lasting air layer retention, dedicated mechanisms to maintain this layer and/or reintroduce air into the system are essential. Any air reintroduction control would allow for increased air lifetime but would require a porous material that allows air flow to be effective. Here, we prepared highly porous superhydrophobic materials, fabricated through facile sintering of silica nanoparticles followed by chemical functionalisation. Sintering temperatures were varied to maximise the material's strength and water contact angles, with angles of up to 153° achieved. Furthermore, the porous properties were demonstrated through oil/water separation experiments, where separation efficiencies of up to 98% were recorded.

2.
Sci Rep ; 14(1): 8144, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584187

RESUMO

Sulfur polymers produced through 'inverse vulcanization' exhibit various attributes, such as photocatalytic activity and a high capacity to adsorb heavy metals. Nevertheless, there is a lack of research investigating the use of sulfur polymers as materials for the removal of organic contaminants. In this work, porous sulfur polymers (PSPs) were synthesized from elemental sulfur and 1,3-diisopropenylbenzene, with porosity introduced via salt templating. The result is a material that can strongly adsorb and chemically neutralize a model organic contaminant (caffeine). PSPs show adsorption up to 5 times higher than a leading adsorption material (activated carbon). Furthermore, either the adsorption or degradation processes can govern the removal efficiency depending on the synthesis parameters of PSPs. This is the first-ever report demonstrating sulfur polymers as effective materials for removing emerging contaminants from water. The versatile synthesis of sulfur polymers offers variation, which means that there is much more to explore in this exciting research area.

3.
J Environ Manage ; 346: 118979, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716169

RESUMO

Wastewater treatment is becoming ever more challenging due to the increasing levels of molecular pollutants that are challenging for existing approaches. Innovative materials are required to help produce potable water from heavily contaminated water sources. One such material is titanium dioxide-activated carbon (TiO2/AC) heterostructures, which combine the photocatalytic properties of TiO2 with the adsorption properties of the ACs. To date, studies on TiO2/AC heterostructures for real-world water purification have yet to be performed. This study aimed to address this gap by comparing the effectiveness of titanium isopropoxide (Ti(OiPr)4) and titanium butoxide (Ti(OBu)4) for synthesizing TiO2/AC heterostructures using four different methods (sol-gel, solvothermal, and microwave-assisted hydrothermal methods [x2]). The elaborated heterostructures were compared with commercial TiO2 materials for their ability to degrade five emerging contaminants (caffeine, hydrochlorothiazide, saccharin, sulfamethoxazole, and sucralose). Hydrochlorothiazide and sulfamethoxazole were demonstrated to be rapidly degraded by UV-C irradiation within 15 min. Caffeine, saccharin, and sucralose were less susceptible to UV degradation. All the elaborated TiO2/AC heterostructures consisted of pure anatase phase, with Ti(OBu)4 syntheses generating larger average crystal sizes and lower surface areas. Sol-gel preparations produced the most effective TiO2/AC heterostructures due to their high surface area. Compared with the commercial TiO2, the heterostructures enhanced the photocatalytic activity of TiO2 by up to 10.0 times. Also, the heterostructures remained effective at environmentally relevant conditions (i.e., concentration of the contaminant and water matrices). The reuse of the materials was tested and showed no reduction in efficiency after four removal/regeneration cycles. Overall, this study presents novel TiO2/AC heterostructures with increased photocatalytic efficiency that can serve as an efficient material for removing contaminants at large scales (e.g., water treatment plants).

4.
Chem Soc Rev ; 51(20): 8476-8583, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36189687

RESUMO

Liquid-repellent surfaces, such as superhydrophobic surfaces, superoleophobic surfaces, and slippery liquid-infused surfaces, have drawn keen research interest from the communities engaged in chemical synthesis, interfacial chemistry, surface engineering, bionic manufacturing and micro-nano machining. This is due to their great potential applications in liquid-proofing, self-cleaning, chemical resistance, anti-icing, water/oil remediation, biomedicine, etc. However, poor robustness and durability that notably hinders the real-world applications of such surfaces remains their Achilles heel. The past few years have witnessed rapidly increasing publications that address the robustness and durability of liquid-repellent surfaces, and many breakthroughs have been achieved. This review provides an overview of the recent progress made towards robust and durable liquid-repellent surfaces. First, we discuss the wetting of solid surface and its generally-adopted characterisation methods, and introduce typical liquid-repellent surfaces. Second, we focus on various evaluation methods of the robustness and durability of liquid-repellent surfaces. Third, the recent advances in design and fabrication of robust and durable liquid-repellent surfaces are reviewed in detail. Fourth, we present the applications where these surfaces have been employed in fields like chemistry, engineering, biology and in daily life. Finally, we discuss the possible research perspectives in robust and durable liquid-repellent surfaces. By presenting such state-of-the-art of this significant and fast-developing area, we believe that this review will inspire multidisciplinary scientific communities and industrial circles to develop novel liquid-repellent surfaces that can meet the requirements of various real-world applications.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água/química , Molhabilidade
5.
Langmuir ; 38(39): 11873-11881, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36125335

RESUMO

A comprehensive understanding of the slip phenomenon on liquid/solid interfaces is essential for multiple real-world applications of superhydrophobic materials, especially those involving drag reduction. In the current contribution, the so-called "slip-length" on an irregularly structured superhydrophobic surface was systematically evaluated, with respect to varying liquid surface tension and viscosity. The superhydrophobic polymer-nanoparticle composite (SPNC) material used exhibits a dual-scale surface roughness and was fabricated via coating a surface with a mixture of polydimethylsiloxane solution and functionalized silica particles. A cone-and-plate rheometric device was employed to quantify the slip length. To independently study the impact of surface tension and viscosity, three types of aqueous solutions were used: sodium dodecyl sulfate, ethanol, and polyethylene glycol. Our experimental results demonstrate that a decreasing surface tension results in a decreasing slip length when the fluid viscosity is held constant. Meanwhile, the slip length is shown to increase with increasing viscosity when the surface tension of the various liquids is matched to isolate effects. The study reveals a linear relationship between slip length and both capillary length and viscosity providing a reference to potentially predict the degree of achievable drag reduction for differing fluids on SPNC surfaces.

6.
ACS Omega ; 7(21): 18052-18062, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664566

RESUMO

Enhancement in the resilience of superhydrophobic coatings is crucial for their future applicability. However, the progress in this aspect is currently limited due to the lack of a consistent resilience analysis methodology/protocol as well as the limited understanding of the influence of the materials components on the resultant coating performance. This study applies a quantitative analysis methodology involving image analysis and mass tracking and utilizes it to investigate how the properties of coating components can influence coating resilience. The factors examined were changing the molecular weight/tensile strength of poly(vinylchloride)/poly(dimethylsiloxane) (PVC/PDMS) polymers and changing the size of the roughening particles. In addition to the examination of resilience data to evaluate degradation patterns, three-dimensional (3D) mapping of the scratches was performed to obtain an insight into how material removal occurs during abrasion. The results can indicate preferential polymer selection (using higher-molecular-weight polymers for PVC) and optimal particle sizes (smaller particles) for maximizing coating resilience. The study, although focused on superhydrophobic materials, demonstrates wide applicability to a range of areas, particularly those focused on the development of high-strength coatings.

7.
J Mater Chem B ; 10(22): 4153-4162, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35438120

RESUMO

Elemental sulfur (S8), a by-product of the petroleum refining industries, possesses many favourable properties including photocatalytic activity and antibacterial activity, in addition to being intrinsically hydrophobic. Despite this, there is a relative lack of research employing elemental sulfur and/or sulfur copolymers within superhydrophobic materials design. In this work, we present the use of sulfur copolymers to produce superhydrophobic materials with advanced functionalities. Using inverse vulcanization and the use of a natural organic crosslinker, perillyl alcohol (PER), stable S8-PER copolymers were synthesised and later combined with silica (SiO2) nanoparticles, to achieve highly water repellent composites that displayed both antimicrobial and photocatalytic properties, in the absence of carcinogenic and/or expensive materials. Here, we investigated the antibacterial performance of coatings against the Staphylococcus aureus bacterial strain, where coatings displayed great promise for use in antifouling applications, as they were found to limit surface adhesion by more than 99%, when compared to uncoated glass samples. Furthermore, UV dye degradation tests were performed, utilizing the commercially available dye resazurin, and it was shown that coatings had the potential to simultaneously exhibit surface hydrophobicity and photoactivity, demonstrating a great advancement in the field of superhydrophobic materials.


Assuntos
Anti-Infecciosos , Polímeros , Antibacterianos/farmacologia , Polímeros/química , Polímeros/farmacologia , Dióxido de Silício/química , Enxofre/química , Água/química
8.
Chem Soc Rev ; 50(11): 6569-6612, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33889879

RESUMO

Superhydrophobic materials have been widely reported throughout the scientific literature. Their properties originate from a highly rough morphology and inherently water repellent surface chemistry. Despite promising an array of functionalities, these materials have seen limited commercial development. This could be attributed to many factors, like material compatibility, low physical resilience, scaling-up complications, etc. In applications where persistent water contact is required, another limitation arises as a major concern, which is the stability of the air layer trapped at the surface when submerged or impacted by water. This review is aimed at examining the diverse array of research focused on monitoring/improving air layer stability, and highlighting the most successful approaches. The reported complexity of monitoring and enhancing air layer stability, in conjunction with the variety of approaches adopted, results in an assortment of suggested routes to achieving success. The review is addressing the challenge of finding a balance between maximising water repulsion and incorporating structures that protect air pockets from removal, along with challenges related to the variant approaches to testing air-layer stability across the research field, and the gap between the achieved progress and the required performance in real-life applications.

9.
Materials (Basel) ; 13(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679887

RESUMO

The targeted separation of oil/water mixtures is a rapidly growing field of research, mainly due to contaminated water becoming an increasingly important environmental issue. Superhydrophobic materials are highly suited to this application; however, growing efforts are being devoted to developing applicable technologies within a range of research communities. The optimal technical solution is one that combines a high separation efficiency with a straightforward fabrication procedure at a low cost. In this report, micronized polyethylene powder has been utilized as a low-cost hydrophobic material to manufacture easy-to-fabricate filters. The effect of heating and solvent addition on the water repellence behaviour has been investigated, according to which the optimum fabrication conditions were determined. The filters show high water repellence (WCA = 154°) and efficient oil/water separation (~99%). The filters are designed to provide a readily achievable approach for the separation of oils (hydrophobic solvents) from water in a range of potential applications.

10.
ACS Appl Mater Interfaces ; 10(1): 98-104, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29210273

RESUMO

The development of photoactivated antimicrobial surfaces that kill pathogens through the production of singlet oxygen has proved very effective in recent years, with applications in medical devices and hospital touch surfaces, to improve patient safety and well being. However, many of these surfaces require a swell-encapsulation-shrink strategy to incorporate the photoactive agents in a polymer matrix, and this is resource intensive, given that only the surface fraction of the agent is active against bacteria. Furthermore, there is a risk that the agent will leach from the polymer and thus raises issues of biocompatibility and patient safety. Here, we describe a more efficient method of fabricating a silicone material with a covalently attached monolayer of photoactivating agent that uses heavy-atom triplet sensitization for improved singlet oxygen generation and corresponding antimicrobial activity. We use boron-dipyrromethane with a reactive end group and incorporated Br atoms, covalently attached to poly(dimethylsiloxane). We demonstrate the efficacy of this material in producing singlet oxygen and killing Staphylococcus aureus and suggest how it might be easily modifiable for future antimicrobial surface development.


Assuntos
Compostos de Boro/química , Antibacterianos , Oxigênio Singlete
11.
J Vis Exp ; (113)2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27500449

RESUMO

The fabrication of polymer-nanoparticle composites is extremely important in the development of many functional materials. Identifying the precise composition of these materials is essential, especially in the design of surface catalysts, where the surface concentration of the active component determines the activity of the material. Antimicrobial materials which utilize nanoparticles are a particular focus of this technology. Recently swell encapsulation has emerged as a technique for inserting antimicrobial nanoparticles into a host polymer matrix. Swell encapsulation provides the advantage of localizing the incorporation to the external surfaces of materials, which act as the active sites of these materials. However, quantification of this nanoparticle uptake is challenging. Previous studies explore the link between antimicrobial activity and surface concentration of the active component, but this is not directly visualized. Here we show a reliable method to monitor the incorporation of nanoparticles into a polymer host matrix via swell encapsulation. We show that the surface concentration of CdSe/ZnS nanoparticles can be accurately visualized through cross-sectional fluorescence imaging. Using this method, we can quantify the uptake of nanoparticles via swell encapsulation and measure the surface concentration of encapsulated particles, which is key in optimizing the activity of functional materials.


Assuntos
Nanopartículas/química , Imagem Óptica/métodos , Polímeros/química , Anti-Infecciosos/química
12.
ACS Nano ; 10(4): 4847-56, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27046054

RESUMO

Graphene nanoribbons (GNRs) with robust electronic band gaps are promising candidate materials for nanometer-scale electronic circuits. Realizing their full potential, however, will depend on the ability to access GNRs with prescribed widths and edge structures and an understanding of their fundamental electronic properties. We report field-effect devices exhibiting ambipolar transport in accumulation mode composed of solution-synthesized GNRs with straight armchair edges. Temperature-dependent electrical measurements specify thermally activated charge transport, which we attribute to inter-ribbon hopping. With access to structurally precise materials in practical quantities and by overcoming processing difficulties in making electrical contacts to these materials, we have demonstrated critical steps toward nanoelectric devices based on solution-synthesized GNRs.

13.
ACS Appl Mater Interfaces ; 7(32): 18188-94, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26204996

RESUMO

The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for selectively opening nanopores in real-time. The tunable nanopores on a quartz nanopipette platform are fabricated using the electroetching of a graphene-based membrane constructed from individual graphene nanoflakes (ø ∼30 nm). The device design allows for in situ opening of the graphene membrane, from fully closed to fully opened (ø ∼25 nm), a feature that has yet to be reported in the literature. The translocation of DNA is studied as the pore size is varied, allowing for subfeatures of DNA to be detected with slower DNA translocations at smaller pore sizes, and the ability to observe trends as the pore is opened. This approach opens the door to creating a device that can be target to detect specific analytes.


Assuntos
Grafite/química , Nanoporos , Técnicas Biossensoriais , DNA/química , DNA/metabolismo , Microscopia de Força Atômica , Nanoporos/ultraestrutura , Nanoestruturas/química
14.
Science ; 347(6226): 1132-5, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25745169

RESUMO

Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

15.
Chem Sci ; 6(2): 1101-1114, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29560198

RESUMO

Ionic liquids have earned the reputation of being 'designer solvents' due to the wide range of accessible properties and the degree of fine-tuning afforded by varying the constituent ions. Mixtures of ionic liquids offer the opportunity for further fine-tuning of properties. A broad selection of common ionic liquid cations and anions are employed to create a sample of binary and reciprocal binary ionic liquid mixtures, which are analysed and described in this paper. Physical properties such as the conductivity, viscosity, density and phase behaviour (glass transition temperatures) are examined. In addition, thermal stabilities of the mixtures are evaluated. The physical properties examined for these formulations are found to generally adhere remarkably closely to ideal mixing laws, with a few consistent exceptions, allowing for the facile prediction and control of properties of ionic liquid mixtures.

16.
Sci Technol Adv Mater ; 16(5): 055006, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27877841

RESUMO

Efficient oil-water separation is achieved using an optimized superhydrophobic material, generated by the zeolitic roughening and subsequent hydrophobic surface treatment of silica filter membranes. The material is both highly rough and intrinsically hydrophobic, resulting in superhydrophobic membranes which show a substantial affinity for hydrophobic solvents and oils. The membranes are syringe-mounted, suction pressure is applied and the selective collection of oil is achieved. The membranes are extremely robust, which is a result of the zeolitic roughening process, they possess small pores (0.7 µm), as a result these devices can perform complete separation and operate at a range of suction pressures. The devices could be readily used in a range of real-world applications, including oil spill clean-up and industrial filters.

17.
Nano Lett ; 15(1): 553-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25467211

RESUMO

Targeted temperature control in nanopores is greatly important in further understanding biological molecules. Such control would extend the range of examinable molecules and facilitate advanced analysis, including the characterization of temperature-dependent molecule conformations. The work presented within details well-defined plasmonic gold bullseye and silicon nitride nanopore membranes. The bullseye nanoantennae are designed and optimized using simulations and theoretical calculations for interaction with 632.8 nm laser light. Laser heating was monitored experimentally through nanopore conductance measurements. The precise heating of nanopores is demonstrated while minimizing the accumulation of heat in the surrounding membrane material.


Assuntos
Temperatura Alta , Lasers , Nanoporos , Compostos de Silício , Ressonância de Plasmônio de Superfície/métodos
18.
Sci Technol Adv Mater ; 15(6): 065003, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877733

RESUMO

Silica microfiber wool was systematically functionalized in order to provide an extremely water repellent and oleophilic material. This was carried out using a two-step functionalization that was shown to be a highly effective method for generating an intense water repulsion and attraction for oil. A demonstration of the silica wools application is shown through the highly efficient separation of oils and hydrophobic solvents from water. Water is confined to the extremities of the material, while oil is absorbed into the voids within the wool. The effect of surface functionalization is monitored though observing the interaction of the material with both oils and water, in addition to scanning electron microscope images, x-ray photoelectron spectroscopy and energy dispersive x-ray analysis. The material can be readily utilized in many applications, including the cleaning of oil spills and filtering during industrial processes, as well as further water purification tasks-while not suffering the losses of efficiency observed in current leading polymeric materials.

19.
Anal Chem ; 85(11): 5405-10, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23627493

RESUMO

We propose and outline a novel technique designed to utilize the unique surface repulsion present between aqueous droplets and customizable superhydrophobic surfaces for the on-chip spatial and temporal manipulation of droplets within microfluidic architectures. Through the integration of carefully designed and prepatterned superhydrophobic surfaces into polymer microfluidic chipsets, it is possible to take advantage of this enhanced surface repulsion to passively manipulate droplets on the microscale for a wide range of droplet operations, including but not limited to acceleration, deceleration, merging, and path control. This work aims to help fulfill and stimulate development based around current requirements for additional passive analytical manipulation and detection techniques in order to enable a reduction in experimental design complexity with the goal of facilitating and improving portability for Lab-on-a-chip devices.


Assuntos
Dispositivos Lab-On-A-Chip , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Água/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Técnicas Analíticas Microfluídicas/métodos , Propriedades de Superfície
20.
Adv Mater ; 24(26): 3505-8, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22706974

RESUMO

A new class of superhydrophobic photocatalytic surfaces that are self-cleaning through light-induced photodegradation and the Lotus effect are presented. The films are formed in a single-step aerosol-assisted chemical vapor deposition (AACVD) process. The films are durable and show no degradation on continuous exposure to UV-C radiation.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Processos Fotoquímicos , Polímeros/química , Titânio/química , Aerossóis , Catálise , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA