Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113461, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37979170

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype with no targeted therapeutics. The luminal androgen receptor (LAR) subtype constitutes 15% of TNBC and is enriched for androgen receptor (AR) and AR target genes. Here, we show that a cohort of TNBC not only expresses AR at a much higher rate (∼80%) but also expresses AR splice variants (AR-SVs) (∼20%), further subclassifying LAR-TNBC. Higher AR and AR-SV expression and corresponding aggressive phenotypes are observed predominantly in specimens obtained from African American women. LAR TNBC specimens are enriched for interferon, Janus kinase (JAK)-signal activator and transducer (STAT), and androgen signaling pathways, which are exclusive to AR-expressing epithelial cancer cells. AR- and AR-SV-expressing TNBC cell proliferation and xenograft and patient-tumor explant growth are inhibited by AR N-terminal domain-binding selective AR degrader or by a JAK inhibitor. Biochemical analysis suggests that STAT1 is an AR coactivator. Collectively, our work identifies pharmacologically targetable TNBC subtypes and identifies growth-promoting interaction between AR and JAK-STAT signaling.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
2.
Pediatr Cardiol ; 39(3): 538-547, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29181795

RESUMO

Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed "negative" molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.


Assuntos
Ecocardiografia Tridimensional/métodos , Valva Mitral/diagnóstico por imagem , Modelos Anatômicos , Impressão Tridimensional , Valva Tricúspide/diagnóstico por imagem , Criança , Ecocardiografia Tridimensional/economia , Humanos , Estudos Retrospectivos , Treinamento por Simulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA