Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimmunomodulation ; 31(1): 66-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38471475

RESUMO

BACKGROUND: Evolutionary medicine builds on evolutionary biology and explains why natural selection has left us vulnerable to disease. Unfortunately, several misunderstandings exist in the medical literature about the levels and mechanisms of evolution. Reasons for these problems start from the lack of teaching evolutionary biology in medical schools. A common mistake is to assume that "traits must benefit the species, as otherwise the species would have gone extinct in the past" confusing evolutionary history (phylogeny) with evolutionary function (fitness). SUMMARY: Here we summarise some basic aspects of evolutionary medicine by pointing out: (1) Evolution has no aim. (2) For adaptive evolution to occur, a trait does not have to be beneficial to its carrier throughout its entire life. (3) Not every single individual carrying an adaptive trait needs to have higher than average fitness. (4) Traits do not evolve for the benefit of the species. Using examples from the field of neuroimmunomodulation like sickness behaviour (nervous system), testosterone (hormones), and cytokines (immunity), we show how misconceptions arise from not differentiating between the explanatory categories of phylogeny (evolutionary history) and evolutionary function (fitness). KEY MESSAGES: Evolution has no aim but is an automatism that does not function for the benefit of the species. In evolution, successful individuals are those that maximise the transmission of their genes, and health and survival are just strategies to have the opportunity to do so. Thus, a trait enabling survival of the individual until reproductive age will spread even if at later age the same trait leads to disease and death. Natural and sexual selection do not select for traits that benefit the health or happiness of the individual, but for traits that increase inclusive fitness even if this increases human suffering. In contrast, our humane aim is to increase individual well-being. Evolutionary medicine can help us achieve this aim against evolutionary constraints.


Assuntos
Evolução Biológica , Neuroimunomodulação , Humanos , Neuroimunomodulação/fisiologia , Animais , Filogenia , Seleção Genética
2.
Proc Biol Sci ; 290(1998): 20230503, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37132239

RESUMO

Despite a number of studies showing a negative relationship between age and telomere length, the universality of this pattern has been recently challenged, mainly in ectothermic animals exhibiting diverse effects of age on telomere shortening. However, data on ectotherms may be strongly affected by the thermal history of the individuals. We thus investigated the age-related changes in relative telomere length in the skin of a small but long-lived amphibian living naturally in a stable thermal environment over its entire life, allowing comparison with other homeothermic animals like birds and mammals. The present data showed a positive relation between telomere length and individual age, independent of sex and body size. A segmented analysis highlighted a breakpoint in the telomere length-age relationship, suggesting that telomere length reached a plateau at the age of 25 years. Further studies focusing on the biology of animals that live much longer than expected based on body mass will contribute to our better understanding of how ageing processes evolved and may also bring innovation for extending human health span.


Assuntos
Longevidade , Homeostase do Telômero , Animais , Humanos , Adulto , Temperatura , Telômero , Encurtamento do Telômero , Mamíferos , Peixes
4.
Sci Rep ; 13(1): 186, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604491

RESUMO

Position within the social group has consequences on individual lifespans in diverse taxa. This is especially obvious in eusocial insects, where workers differ in both the tasks they perform and their aging rates. However, in eusocial wasps, bees and ants, the performed task usually depends strongly on age. As such, untangling the effects of social role and age on worker physiology is a key step towards understanding the coevolution of sociality and aging. We performed an experimental protocol that allowed a separate analysis of these two factors using four groups of black garden ant (Lasius niger) workers: young foragers, old foragers, young nest workers, and old nest workers. We highlighted age-related differences in the proteome and metabolome of workers that were primarily related to worker subcaste and only secondarily to age. The relative abundance of proteins and metabolites suggests an improved xenobiotic detoxification, and a fuel metabolism based more on lipid use than carbohydrate use in young ants, regardless of their social role. Regardless of age, proteins related to the digestive function were more abundant in nest workers than in foragers. Old foragers were mostly characterized by weak abundances of molecules with an antibiotic activity or involved in chemical communication. Finally, our results suggest that even in tiny insects, extended lifespan may require to mitigate cancer risks. This is consistent with results found in eusocial rodents and thus opens up the discussion of shared mechanisms among distant taxa and the influence of sociality on life history traits such as longevity.


Assuntos
Formigas , Abelhas , Animais , Formigas/fisiologia , Envelhecimento/fisiologia , Comportamento Social , Fenótipo , Meio Social , Comportamento Animal/fisiologia
5.
Ecol Evol ; 12(10): e9364, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311389

RESUMO

Telomeres, the terminal repetitive DNA sequences at the ends of linear chromosomes, have strong associations with longevity in some major taxa. Longevity has been linked to rate of decline in telomere length in birds and mammals, and absolute telomere length seems to be associated with body mass in mammals. Using a phylogenetic comparative method and 30 species of birds, we examined longevity (reflected by maximum lifespan), absolute telomere length, the rate of change in telomere length (TROC), and body mass (often strongly associated with longevity) to ascertain their degree of association. We divided lifespan into two life-history components, one reflected by body size (measured as body mass) and a component that was statistically independent of body mass. While both lifespan and body mass were strongly associated with a family tree of the species (viz., the phylogeny of the species), telomere measures were not. Telomere length was not significantly associated with longevity or body mass or our measure of mass-independent lifespan. TROC, however, was strongly associated with mass-independent lifespan, but only to a much lesser degree at best with body mass-predicted lifespan. Our results supported an association of TROC and longevity, in particular longevity that was independent of body size and part of the pace-of-life syndrome of life histories.

6.
Physiol Biochem Zool ; 95(5): 416-429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939618

RESUMO

Living in social groups may exacerbate interindividual competition for territory, food, and mates, leading to stress and possible health consequences. Unfavorable social contexts have been shown to elevate glucocorticoid levels (often used as biomarkers of individual stress), but the downstream consequences of socially stressful environments are rarely explored. Our study experimentally tests the mechanistic links between social aggression, oxidative stress, and somatic maintenance in captive zebra finches (Taeniopygia guttata). Over 64 d, we measured the effects of aggression (received or emitted) on the individual oxidative status, body condition, and changes in relative telomere length (rTL) of birds living in high- and low-social-density conditions. Using path analyses, we found that birds living at high social density increased their aggressive behavior. Birds receiving the highest number of aggressions exhibited the strongest activation of antioxidant defenses and highest plasmatic levels of reactive oxygen metabolites. In turn, this prevented birds from maintaining or restoring telomere length between the beginning and the end of the experiment. Received aggression also had a direct negative effect on changes in rTL, unrelated to oxidative stress. In contrast, emitted aggression had no significant effect on individual oxidative stress or changes in rTL. Body condition did not appear to affect the physiological response to aggression or oxidative stress. At low density, we found trends that were similar to those at high density but nonsignificant. Our study sheds light on the causal chain linking the social environment and aggressive behavior to individual oxidative stress and telomere length. The long-term consequences of socially induced stress on fitness remain to be characterized.


Assuntos
Tentilhões , Condicionamento Físico Animal , Agressão/fisiologia , Animais , Tentilhões/fisiologia , Estresse Oxidativo , Telômero
7.
Horm Behav ; 145: 105232, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853411

RESUMO

Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.


Assuntos
Meio Social , Vertebrados , Adaptação Fisiológica , Animais , Humanos , Comportamento Social , Estresse Psicológico , Vertebrados/fisiologia
8.
Oecologia ; 199(2): 301-312, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35713713

RESUMO

Telomeres are specialized non-coding DNA sequences located at the end of chromosomes and that protect genetic information. Telomere loss over lifespan is generally viewed as a phenomenon associated with aging in animals. Recently, telomere elongation after hibernation has been described in several mammals. Whether this pattern is an adaptation to repair DNA damage caused during rewarming from torpor or if it coevolved as a mechanism to promote somatic maintenance in preparation for the upcoming reproductive effort remains unclear. In a longitudinal study measuring telomere length using buccal swabs, we tested if telomere elongation was related to reproductive success in wild adult female Columbian ground squirrels (Urocitellus columbianus) that were monitored from emergence from hibernation to the end of the reproductive season. We found three key results. First, female telomere length increased at the start of the breeding season, both in breeding and non-breeding individuals. Second, post-emergence telomere lengthening was unrelated to female future reproductive output. Third, telomere length decreased in breeding females during lactation, but remained stable in non-breeding females over a similar period. Within breeders, telomeres shortened more in females producing larger and heavier litters. We concluded that telomere lengthening after hibernation did not constrain immediate female reproductive capacities. It was more likely to be part of the body recovery process that takes place after hibernation. Telomere erosion that occurs after birth may constitute a physiological cost of female reproduction.


Assuntos
Homeostase do Telômero , Telômero , Animais , Feminino , Estudos Longitudinais , Masculino , Reprodução/fisiologia , Sciuridae/genética
9.
Mol Ecol ; 31(14): 3812-3826, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35575903

RESUMO

Understanding ageing and the diversity of life histories is a cornerstone in biology. Telomeres, the protecting caps of chromosomes, are thought to be involved in ageing, cancer risks and life-history strategies. They shorten with cell division and age in somatic tissues of most species, possibly limiting lifespan. The resource allocation trade-off hypothesis predicts that short telomeres have thus coevolved with early reproduction, proactive behaviour and reduced lifespan, that is, a fast pace-of-life syndrome (POLS). Conversely, since short telomeres may also reduce the risks of cancer, the anticancer hypothesis advances that they should be associated with slow POLS. Conclusion on which hypothesis best supports the role of telomeres as mediators of life-history strategies is hampered by a lack of study on wild short-lived vertebrates, apart from birds. Using seven years of data on wild Eastern chipmunks Tamias striatus, we highlighted that telomeres elongate with age (n = 204 and n = 20) and do not limit lifespan in this species (n = 51). Furthermore, short telomeres correlated with a slow POLS in a sex-specific way (n = 37). Females with short telomeres had a delayed age at first breeding and a lower fecundity rate than females with long telomeres, while we found no differences in males. Our findings support most predictions adapted from the anticancer hypothesis, but none of those from the resource allocation trade-off hypothesis. Results are in line with an increasing body of evidence suggesting that other evolutionary forces than resource allocation trade-offs shape the diversity of telomere length in adult somatic cells and the relationships between telomere length and life-histories.


Assuntos
Longevidade , Encurtamento do Telômero , Adulto , Envelhecimento/genética , Animais , Feminino , Humanos , Longevidade/genética , Masculino , Mamíferos/genética , Telômero/genética
10.
Exp Gerontol ; 164: 111811, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35472570

RESUMO

In humans, hyperglycemia is associated with protein glycation, which may contribute to aging. Strikingly, birds usually outlive mammals of the same body mass, while exhibiting high plasma glucose levels. However, how birds succeed in escaping pro-aging effects of glycation remains unknown. Using a specific mass spectrometry-based approach in captive zebra finches of known age, we recorded high glycaemia values but no glycated hemoglobin form was found. Still, we showed that zebra finch hemoglobin can be glycated in vitro, albeit only to a limited extent compared to its human homologue. This may be due to peculiar structural features, as supported by the unusual presence of three different tetramer populations with balanced proportions and a still bound cofactor that could be inositol pentaphosphate. High levels of the glycated forms of zebra finch plasma serotransferrin, carbonic anhydrase 2, and albumin were measured. Glucose, age or body mass correlations with either plasma glycated proteins or hemoglobin isoforms suggest that those variables may be future molecular tools of choice to monitor glycation and its link with individual fitness. Our molecular advance may help determine how evolution succeeded in associating flying ability, high blood glucose and long lifespan in birds.


Assuntos
Tentilhões , Hiperglicemia , Envelhecimento , Animais , Hemoglobinas Glicadas/metabolismo , Mamíferos , Espectrometria de Massas
11.
Environ Res ; 208: 112712, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016866

RESUMO

Telomeres are used as biomarkers of vertebrate health because of the link between their length, lifespan, and survival. Exposure to environmental stressors appears to alter telomere dynamics, but little is known about telomere length and persistent organic pollutant (POP) exposure in wildlife. The white-tailed eagle (WTE; Haliaeetus albicilla) is an avian top predator that accumulates high levels of POPs and may subsequently suffer adverse health effects. Here we study the Baltic WTE population that is well documented to have been exposed to large contaminant burdens, thereby making it a promising candidate species for analyzing pollutant-mediated effects on telomeres. We investigated telomere lengths in WTE nestlings (n = 168) over 19 years and examined legacy POP concentrations (organochlorines and polybrominated diphenyl ethers) in whole blood and serum as potential drivers of differences in telomere length. Although we detected significant year-to-year variations in telomere lengths among the WTE nestlings, telomere lengths did not correlate with any of the investigated POP concentrations of several classes. Given that telomere lengths did not associate with POP contamination in the Baltic WTE nestlings, we propose that other environmental and biological factors, which likely fluctuate on a year-to-year basis, could be more important drivers of telomere lengths in this population.


Assuntos
Águias , Poluentes Ambientais , Animais , Monitoramento Ambiental , Poluentes Orgânicos Persistentes , Suécia , Telômero
12.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989809

RESUMO

Within populations, phenotypic plasticity may allow adaptive phenotypic variation in response to selection generated by environmental heterogeneity. For instance, in multivoltine species, seasonal changes between and within generations may trigger morphological and physiological variation enhancing fitness under different environmental conditions. These seasonal changes may irreversibly affect adult phenotypes when experienced during development. Yet, the irreversible effects of developmental plasticity on adult morphology have rarely been linked to life-history traits even though they may affect different fitness components such as reproduction, mobility and self-maintenance. To address this issue, we raised larvae of Pieris napi butterflies under warm or cool conditions to subsequently compare adult performance in terms of reproduction performance (as assessed through fecundity), displacement capacity (as assessed through flight propensity and endurance) and self-maintenance (as assessed through the measurement of oxidative markers). As expected in ectotherms, individuals developed faster under warm conditions and were smaller than individuals developing under cool conditions. They also had more slender wings and showed a higher wing surface ratio. These morphological differences were associated with changes in the reproductive and flight performance of adults, as individuals developing under warm conditions laid fewer eggs and flew larger distances. Accordingly, the examination of their oxidative status suggested that individuals developing under warm conditions invested more strongly into self-maintenance than individuals developing under cool conditions (possibly at the expense of reproduction). Overall, our results indicate that developmental conditions have long-term consequences on several adult traits in butterflies. This plasticity probably acts on life-history strategies for each generation to keep pace with seasonal variations and may facilitate acclimation processes in the context of climate change.


Assuntos
Borboletas , Características de História de Vida , Adaptação Fisiológica , Animais , Borboletas/fisiologia , Humanos , Estações do Ano , Asas de Animais
13.
Mol Ecol ; 31(23): 6239-6251, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34664335

RESUMO

Increasing evidence at the cellular level is helping to provide proximate explanations for the balance between investment in growth, reproduction and somatic maintenance in wild populations. Studies of telomere dynamics have informed researchers about the loss and gain of telomere length both on a seasonal scale and across the lifespan of individuals. In addition, telomere length and telomere rate of loss seems to have evolved differently among taxonomic groups, and relate differently to organismal diversity of lifespan. So far, the mechanisms behind telomere maintenance remain elusive, although many studies have inferred a role for telomerase, an enzyme/RNA complex known to induce telomere elongation from laboratory studies. Exciting further work is also emerging that suggests telomerase (and/or its individual component parts) has a role in fitness that goes beyond the maintenance of telomere length. Here, we review the literature on telomerase biology and examine the evidence from ecological studies for the timing and extent of telomerase activation in relation to life history events associated with telomere maintenance. We suggest that the underlying mechanism is more complicated than originally anticipated, possibly involves several complimentary pathways, and is probably associated with high energetic costs. Potential pathways for future research are numerous and we outline what we see as the most promising prospects to expand our understanding of individual differences in immunity or reproduction efficiency.


Assuntos
Telomerase , Longevidade , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Animais
14.
Cell Mol Life Sci ; 79(1): 29, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34971425

RESUMO

The social organization of many primate, bird and rodent species and the role of individuals within that organization are associated with specific individual physiological traits. However, this association is perhaps most pronounced in eusocial insects (e.g., termites, ants). In such species, genetically close individuals show significant differences in behavior, physiology, and life expectancy. Studies addressing the metabolic changes according to the social role are still lacking. We aimed at understanding how sociality could influence essential molecular processes in a eusocial insect, the black garden ant (Lasius niger) where queens can live up to ten times longer than workers. Using mass spectrometry-based analysis, we explored the whole metabolome of queens, nest-workers and foraging workers. A former proteomics study done in the same species allowed us to compare the findings of both approaches. Confirming the former results at the proteome level, we showed that queens had fewer metabolites related to immunity. Contrary to our predictions, we did not find any metabolite linked to reproduction in queens. Among the workers, foragers had a metabolic signature reflecting a more stressful environment and a more highly stimulated immune system. We also found that nest-workers had more digestion-related metabolites. Hence, we showed that specific metabolic signatures match specific social roles. Besides, we identified metabolites differently expressed among behavioral castes and involved in nutrient sensing and longevity pathways (e.g., sirtuins, FOXO). The links between such molecular pathways and aging being found in an increasing number of taxa, our results confirm and strengthen their potential universality.


Assuntos
Formigas/imunologia , Formigas/metabolismo , Hierarquia Social , Sistema Imunitário/metabolismo , Comportamento Social , Animais , Comportamento Animal , Metaboloma , Metabolômica , Análise de Componente Principal
15.
Ecol Evol ; 11(19): 12908-12922, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646443

RESUMO

Longevity is highly variable among animal species and has coevolved with other life-history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life-history traits independent of body size are largely underexplored for birds. To test associations of life-history traits and telomere dynamics, we conducted a phylogenetic meta-analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life-history traits. We examined 3 principal components of 12 life-history variables that represented: body size (PC1), the slow-fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small-to-medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life-history variables. TROC, however, was negatively and moderate-to-strongly associated with PC2 (unadjusted r = -.340; with phylogenetic correction, r = -.490). Independent of body size, long-lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian-related species, yet telomere dynamics are strongly linked to the pace of life.

16.
Oecologia ; 196(1): 37-51, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33864121

RESUMO

Studies on cooperative breeders have addressed the effects of non-breeding 'helpers' on reproduction and parental care, but the consequences for offspring physiology and long-term survival are less understood. Helpers are expected to benefit offspring, but their presence can also lead to decreased pre- or post-natal parental reproductive effort. To examine whether prenatal and postnatal helpers influence offspring condition, we conducted a whole-clutch cross-fostering experiment in sociable weavers (Philetairus socius) that altered the nestlings' social environment (presence/absence of helpers). We tested whether relative telomere length (rTL), an indicator of somatic maintenance, was influenced by prenatal and/or postnatal presence of helpers 9 and 17 days after hatching, and whether rTL predicted long-term survival. Nine days after hatching, we found an overall positive effect of postnatal helpers on rTL: for nestlings with prenatal helpers, a reduction in the number of helpers post-hatch was associated with shorter telomeres, while nestlings swapped from nests without helpers to nests with helpers had a larger rTL. However, when prenatal helpers were present, an increased number of helpers after hatching led to shorter telomeres. Nine-day old chicks with longer rTL tended to be more likely to survive over the 5 years following hatching. However, close to fledging, there was no detectable effect of the experiment on rTL and no link between rTL and survival. This experimental study of a wild cooperative breeder, therefore, presents partial support for the importance of the presence of helpers for offspring rTL and the link between early-life telomere length and long-term survival.


Assuntos
Pardais , Telômero , Animais , Longevidade , Reprodução
17.
Insect Sci ; 28(3): 825-838, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32306510

RESUMO

In most eusocial insects, the division of labor results in relatively few individuals foraging for the entire colony. Thus, the survival of the colony depends on its efficiency in meeting the nutritional needs of all its members. Here, we characterize the network topology of a eusocial insect to understand the role and centrality of each caste in this network during the process of food dissemination. We constructed trophallaxis networks from 34 food-exchange experiments in black garden ants (Lasius niger). We tested the influence of brood and colony size on (i) global indices at the network level (i.e., efficiency, resilience, centralization, and modularity) and (ii) individual values (i.e., degree, strength, betweenness, and the clustering coefficient). Network resilience, the ratio between global efficiency and centralization, was stable with colony size but increased in the presence of broods, presumably in response to the nutritional needs of larvae. Individual metrics highlighted the major role of foragers in food dissemination. In addition, a hierarchical clustering analysis suggested that some domestics acted as intermediaries between foragers and other domestics. Networks appeared to be hierarchical rather than random or centralized exclusively around foragers. Finally, our results suggested that networks emerging from social insect interactions can improve group performance and thus colony fitness.


Assuntos
Formigas/fisiologia , Comportamento Alimentar , Comportamento Social , Análise de Rede Social , Animais , Comportamento Animal , Análise de Componente Principal/métodos , Conglomerados Espaço-Temporais
18.
Artigo em Inglês | MEDLINE | ID: mdl-33278594

RESUMO

2,4-Dinitrophenol (DNP), a molecule uncoupling mitochondrial oxidative phosphorylation from oxygen consumption, is illegally used by humans as a diet pill, but is nonetheless investigated as a potential human medicine against 'metabesity'. Due to its proven acute toxicity and the scarceness of long-term studies on DNP administration in vertebrates, we determined the impact of a long-term DNP treatment (~4 mg.kg-1.day-1, i.e. within the range taken illegally by humans) on body mass, metabolism, ageing and lifespan in a captive bird model, the zebra finch. The chronic absorption of DNP over life (>4 years) led to a mild increase in energy expenditure (ca. +11% compared to control group), without significantly altering the normal slight increase in body mass with age. DNP did not significantly influence the alteration of physical performance, the rise in oxidative damage, or the progressive shortening of telomeres with age. However, DNP-treated individuals had a significantly shorter lifespan (ca. -21% in median lifespan compared to control group), thereby raising potential concerns about DNP use as a diet pill or medicine.


Assuntos
2,4-Dinitrofenol/toxicidade , Tentilhões/fisiologia , Animais , Aves , Dieta , Metabolismo Energético , Feminino , Tentilhões/metabolismo , Longevidade/efeitos dos fármacos , Masculino , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio , Desacopladores/toxicidade
19.
J Evol Biol ; 34(3): 584-589, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226680

RESUMO

Telomere length is a biomarker of biological ageing and lifespan in various vertebrate taxa. Evidence is accumulating that telomeres shorten more rapidly when an individual is exposed to environmental stressors. Parasites are potent selective agents that can cause physiological stress directly or indirectly through the activation of the host's immune system. Yet to date, empirical evidence for a role of parasites in telomere dynamics in natural populations is limited. Here, we show experimentally that exposure to ectoparasitic hen fleas (Ceratophyllus gallinae) during growth results in shorter telomeres in female, but not male, great tit (Parus major) nestlings. Females had longer telomeres than males when growing up in experimentally deparasitized nests but, likely because of the sex-specific effects of ectoparasitism on telomere length, this sexual dimorphism was absent in birds growing up in experimentally infested nests. Our results provide the first experimental evidence for a role of ectoparasitism in telomere dynamics in a natural vertebrate population, and suggest that the costs of infection manifest in sex-specific ways.


Assuntos
Interações Hospedeiro-Parasita , Caracteres Sexuais , Sifonápteros/fisiologia , Aves Canoras/parasitologia , Homeostase do Telômero , Animais , Feminino , Masculino , Aves Canoras/genética
20.
Oecologia ; 194(4): 609-620, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33201323

RESUMO

Telomere shortening has been used as an indicator of aging and is believed to accelerate under harsh environmental conditions. This can be attributed to the fact that telomere shortening has often been regarded as non-reversible and negatively impacting fitness. However, studies of laboratory mice indicate that they may be able to repair telomere loss to recover from environmental harshness, as indicated by recent studies in hibernating rodents. We studied seasonal variation in telomere dynamics in African striped mice (Rhabdomys pumilio) living in a highly seasonal environment. In our annual species, individuals born in the moist spring (high food availability) need to survive the harsh dry summer (low food availability) to be able to reproduce in the following spring. We studied the effect of the harsh dry vs. the benign moist season on telomere dynamics. We also tested if telomere length or the rate of change in telomere length over the dry season predicted the probablity of dissapearance from the population at the same time. Male, but not female, stripped mice showed age-related telomere erosion. Telomeres were longer at the beginning of the dry season compared to the rest of the year. Telomeres increased significantly in length during the moist season. Neither telomere length at the onset of the dry season nor telomere loss over the dry season predicted whether or not individuals disappeared. In conclusion, our data suggest that seasonal attrition and restoring of telomeres also occurs in non-hibernating wild rodents living in hot food restricted environments.


Assuntos
Murinae , Telômero , Envelhecimento , Animais , Alimentos , Humanos , Masculino , Camundongos , Murinae/genética , Estações do Ano , Encurtamento do Telômero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA