RESUMO
OBJECTIVE: To determine whether staff responses to abuse disclosures had improved since the introduction of a trauma policy and training programme. METHOD: The files of 250 clients attending four New Zealand mental health centres were audited. RESULTS: There was a significant improvement, compared to an audit prior to the introduction of the policy and training, in the proportion of abuse cases included in formulations, and, to a lesser extent, in treatment plans. There was no significant improvement in the proportion referred for relevant treatment, which remained at less than 25% across abuse categories. The proportion of neglect disclosures responded to was significantly lower than for abuse cases. Fifty percent of the files in which abuse/neglect was recorded noted whether the client had been asked about previous disclosure, and 22% noted whether the client thought there was any connection between the abuse/neglect and their current problems. Less than 1% of cases were reported to legal authorities. People diagnosed with a psychotic disorder were significantly less likely to be responded to appropriately. CONCLUSION: Future training may need to focus on responding well to neglect and people diagnosed with psychosis, on making treatment referrals, and on initiating discussions about reporting to authorities.
Assuntos
Maus-Tratos Infantis/estatística & dados numéricos , Serviços de Saúde Mental , Criança , Maus-Tratos Infantis/classificação , Maus-Tratos Infantis/psicologia , Abuso Sexual na Infância/prevenção & controle , Abuso Sexual na Infância/estatística & dados numéricos , Feminino , Humanos , Masculino , Notificação de Abuso , Nova Zelândia , Inquéritos e Questionários , Recursos HumanosRESUMO
Ground beetle data were generated using pitfall traps in the 17-year period from 1993 to 2009 and used to investigate the effects of changes in surrounding crop cover on beetle activity and assemblages, together with the effects of weather variability. Beetles were recorded from non-crop field margins (overgrown hedges). Crop cover changes explained far more variation in the beetle assemblages recorded than did temperature and rainfall variation. A reduction in management intensity and disturbance in the crops surrounding the traps, especially the introduction and development of willow coppice, was concomitant with changes in individual species activity and assemblage composition of beetles trapped in non-crop habitat. There were no consistent patterns in either overall beetle activity or in the number of species recorded over the 17-year period, but there was a clear change from assemblages dominated by smaller species with higher dispersal capability to ones with larger beetles with less dispersal potential and a preference for less disturbed agroecosystems. The influence of surrounding crops on ground beetle activity in non-crop habitat has implications for ecosystem service provision by ground beetles as pest predators. These results are contrary to conventional assumptions and interpretations, which suggest activity of pest predators in crops is influenced primarily by adjacent non-crop habitat. The long-term nature of the assessment was important in elucidation of patterns and trends, and indicated that policies such as agri-environment schemes should take cropping patterns into account when promoting management options that are intended to enhance natural pest control.
Assuntos
Besouros/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Animais , Besouros/classificação , Ecossistema , Temperatura , Tempo (Meteorologia)RESUMO
BACKGROUND: Over the past decade, managing the disclosure of findings of genomic research has been the subject of extensive scientific, ethical and legal commentary and is a major challenge for biobanks. AIMS: To examine views of the general Australian public about the disclosure of individual research results (IRR) and incidental findings (IF) from biobank genomic research. METHODS: A national computer assisted telephone interview was conducted amongst a representative sample of (n = 800) adult residents across each Australian State and Territory. RESULTS: The majority of the Australian general public would be interested in receiving IRR and IF if they allowed their blood/tissue to be used in research; 94.4% (n = 800) reported that they would like to receive 'specific information obtained from your sample that may be important to your health or treatment', and 83.4% their 'potential genetic risk of an inherited disease'. Although fewer desired to receive 'any IF that were not directly related to your (potential) diagnosed condition' (70.0%), most would still like to receive IF. A latent class analysis on the desire to receive (or not) all types of results revealed differences in preferences in the information they wished to receive. CONCLUSION: The majority of Australians desire to receive most information arising from research involving their tissue, including IRR and IF. Differences in the extent and type of information they desire to receive are noted. Biobanks must establish strategies to identify information needs of donors, assess research data and communicate with donors and donor families. Processes need to take account of differences in donor preferences and in the clinical or research context(s).
Assuntos
Bancos de Espécimes Biológicos/ética , Pesquisa Biomédica , Revelação/ética , Achados Incidentais , Informática Médica/métodos , Opinião Pública , Sujeitos da Pesquisa , Adulto , Austrália/epidemiologia , Pesquisa Biomédica/ética , Dever de Recontatar/ética , Genômica/ética , Genômica/estatística & dados numéricos , Guias como Assunto , Humanos , Sujeitos da Pesquisa/psicologia , Doadores de TecidosRESUMO
Three projects involving point velocity probes (PVPs) illustrate the advantages of direct groundwater velocity measurements. In the first, a glacial till and outwash aquifer was characterized using conventional methods and multilevel PVPs for designing a bioremediation program. The PVPs revealed a highly conductive zone that dominated the transport of injected substances. These findings were later confirmed with a natural gradient tracer test. In the second, PVPs were used to map a groundwater velocity field around a dipole recirculation well. The PVPs showed higher than expected velocities near the well, assuming homogeneity in the aquifer, leading to improved representations of the aquifer heterogeneity in a 3D flow model, and an improved match between the modelled and experimental tracer breakthrough curves. In the third study, PVPs detected subtle changes in aquifer permeability downgradient of a biostimulation experiment. The changes were apparently reversible once the oxygen source was depleted, but in locations where the oxygen source lingered, velocities remained low. PVPs can be a useful addition to the hydrogeologist's toolbox, because they can be constructed inexpensively, they provide data in support of models, and they can provide information on flow in unprecedented detail.
Assuntos
Água Subterrânea , Movimentos da Água , Purificação da Água/métodos , Biodegradação Ambiental , Água Subterrânea/microbiologia , Modelos Teóricos , OntárioRESUMO
This paper describes experiments using optical tweezers to probe chloroplast arrangement, shape and consistency in cells of living leaf tissue and in suspension. Dual optical tweezers provided two-point contact on a single chloroplast or two-point contact on two adhered chloroplasts for manipulation in suspension. Alternatively, a microstirrer consisting of a birefringent particle trapped in an elliptically polarized laser trap was used to induce motion and tumbling of a selected chloroplast suspended in a solution. We demonstrate that displacement of chloroplasts inside the cell is extremely difficult, presumably due to chloroplast adhesion to the cytoskeleton and connections between organelles. The study also confirms that the chloroplasts are very thin and extremely cup-shaped with a concave inner surface and a convex outer surface.
Assuntos
Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Micromanipulação/instrumentação , Micromanipulação/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Spinacia oleracea/citologia , Spinacia oleracea/ultraestruturaRESUMO
Pepper (Capsicum annuum L.) plants were grown aeroponically in a Singapore greenhouse under natural diurnally fluctuating ambient shoot temperatures, but at two different root-zone temperatures (RZTs): a constant 20 +/- 2 degrees C RZT and a diurnally fluctuating ambient (A) (25-40 degrees C) RZT. Plants grown at 20-RZT had more leaves, greater leaf area and dry weight than A-RZT plants. Reciprocal transfer experiments were conducted between RZTs to investigate the effect on plant growth, stomatal conductance (gs) and water relations. Transfer of plants from A-RZT to 20-RZT increased plant dry weight, leaf area, number of leaves, shoot water potential (psi shoot), and gs; while transfer of plants from 20-RZT to A-RZT decreased these parameters. Root hydraulic conductivity was measured in the latter transfer and decreased by 80% after 23 d at A-RZT. Transfer of plants from 20-RZT to A-RZT had no effect on xylem ABA concentration or xylem nitrate concentration, but reduced xylem sap pH by 0.2 units. At both RZTs, gs measured in the youngest fully expanded leaves increased with plant development. In plants with the same number of leaves, A-RZT plants had a higher gs than 20-RZT plants, but only under high atmospheric vapour pressure deficit. The roles of chemical signals and hydraulic factors in controlling gs of aeroponically grown Capsicum plants at different RZTs are discussed.
Assuntos
Capsicum/crescimento & desenvolvimento , Plantas Medicinais , Folhas de Planta/crescimento & desenvolvimento , TemperaturaRESUMO
Arabidopsis thaliana leaves were examined in short-term (1 h) and long-term (10 h) irradiance experiments involving growth, saturating and excess light. Changes in photosynthetic and chlorophyll fluorescence parameters and in populations of functional photosystem II (PSII) centers were independently measured. Xanthophyll pigments, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-binding sites, the amounts of D1 protein, and the rates of D1 protein synthesis were determined. These comprehensive studies revealed that under growth or light-saturating conditions, photosynthetic parameters remained largely unaltered. Photoprotection occurred at light saturation indicated by a dark-reversible increase in non-photochemical quenching accompanied by a 5-fold increase in antheraxanthin and zeaxanthin. No consistent change in the concentrations of functional PSII centers, DCMU-binding sites, or D1 protein pool size occurred. D1 protein synthesis was rapid. In excess irradiance, quantum yield of O2 evolution and the efficiency of PSII were reduced, associated with a 15- to 20-fold increase in antheraxanthin and zeaxanthin and a sustained increase in nonphotochemical quenching. A decrease in functional PSII center concentration occurred, followed by a decline in the concentration of D1 protein; the latter, however, was not matched by a decrease in DCMU-binding sites. In the most extreme treatments, DCMU-binding site concentration remained 2 times greater than the concentration of D1 protein recognized by antibodies. D1 protein synthesis rates remained unaltered at excess irradiances.
RESUMO
In vivo radiolabeling of chloroplast proteins in barley (Hordeum vulgare L. cv Corvette) leaves and their separation by one-dimensional electrophoresis revealed at least seven heat-shock proteins between 24 and 94 kD, of which most have not been previously identified in this C(3) species. Fractionation into stromal and thylakoid membrane components showed that all chloroplast heat-shock proteins were synthesized on cytoplasmic ribosomes, translocated into the chloroplast, and located in the stroma. Examination of stromal preparations by native (nondissociating) polyacrylamide gel electrophoresis revealed the presence of a high-molecular mass heat-shock protein complex in barley. This complex was estimated to be 250 to 265 kD in size. Dissociation by denaturing polyacrylamide gel electrophoresis revealed a single protein component, a 32-kD heat-shock protein. The synthesis of this protein and the formation of the heat-shock protein complex were dependent on functional cytoplasmic ribosomes. Immunological studies showed that the heat-shock protein complex did not contain any proteins homologous to the alpha-subunit of ribulose bisphosphate carboxylase oxygenase subunit-binding protein. Other features about the complex included the absence of nucleic acid (RNA or DNA) and its nondissociation in the presence of Mg(2+)/ATP. These results suggest that the heat-shock protein complex in barley chloroplasts is a homogeneous octamer of 32-kD subunits.
RESUMO
The in vivo synthesis of early heat-shock proteins in young leaves of barley (Hordeum vulgare L.) and sorghum (Sorghum bicolor L.) was studied by one- and two-dimensional electrophoresis. Analysis of whole leaf protein patterns demonstrated clearly the enhanced resolution of heat-shock proteins, especially those of low molecular weight, when separated by two-dimensional electrophoresis. Comparison between the two cereals showed that a greater number and diversity of heat-shock proteins were induced in the subtropical C(4) (sorghum) species compared to the temperate C(3) (barley) species. Fractionation of whole leaf proteins into soluble and membrane fractions showed the majority of heat-shock proteins to be associated with the soluble fraction in both sorghum and barley. However, several low molecular mass (17-24 kilodalton) heat-shock proteins were clearly identified in the membrane fractions, indicating a likely association with thylakoid membranes in vivo during the early stages of a heat-shock response in both species.
RESUMO
Light drives photosynthesis, but paradoxically light is also the most variable environmental factor influencing photosynthesis both qualitatively and quantitatively. The photosynthetic apparatus of higher plants is adaptable in the extreme, as exemplified by its capacity for acclimation to very bright sunny or deeply shaded conditions. It can also respond to rapid changes in light such as sunflecks. In this paper I offer a model that i) explains the thylakoid membrane organisation into grana stacks and stroma lamellae, ii) proposes a role for rapid D1 protein turnover and LHCII phosphorylation, and iii) suggests a mechanism for photoinhibition. I argue that the photosynthetic membrane system is dynamic in three dimensions, so much so that, in the light, it is in constant motion and operates in a manner somewhat analogous to a conveyor belt. D1 protein degradation is proposed to be the motor that drives this system. Photoinhibition is suggested to be due to the arrest of D1 protein turnover.
RESUMO
Thylakoid membranes isolated from halophytic species showed differences in their interactions with ionic and lipophilic electron acceptors when compared to thylakoids from non-halophytes. FeCN was considerably less efficient as electron acceptor with halophyte thylakoids, supporting much lower rates of O2 evolution and having a lower affinity. FeCN accepted electrons at a different, DMMIB insensitive, site with these thylakoids. 1,4-Benzo-quinones with less positive midpoint potentials were less effective in accepting electrons from halophyte thylakoids compared to nonhalophyte thylakoids, also reflected in lower rates of O2 evolution and lower affinity. Considering the lipolphilic nature and the fact that there was no apparent change in the site donating electrons to the quinones, an alteration in the midpoint potential of this site by about +100mV is postulated for the halophyte thylakoids.
RESUMO
Heat inactivation of photosynthetic O2 evolution was studied in isolated thylakoids from spinach (Spinacia oleracea) and mangrove (Avicennia marina) leaves. Different temperatures, salt, pH and uncoupler effects were investigated. From these results and others in the literature it was concluced that chloride loss from the membrane and, more specifically, the oxygen-evolving complex of photosystem II, may be the cause of inhibition of oxygen evolution during heat inactivation.
RESUMO
Stacking of thylakoid membranes in vitro was assessed using electron microscopy. Grana stacks of spinach thylakoids formed when 5 mol m-3 MgCl2 was present, but no stacking of thylakoids from the mangrove Avicennia marina occurred in the presence of 10 mol m-3 ? MgCl2 . Isolation of mangrove thylakoids with a high osmotic strength medium did not induce grana formation if the medium consisted only of sorbitol or glycinebetaine. Addition of cations to the high osmotic strength medium did induce some loose-grana formation, with divalent cations being more effective than monovalent cations. Glycinebetaine was a better osmoticum than sorbitol for grana formation provided divalent cations had been added. Oxygen evolution activity of the preparations was influenced by the amount of membrane stacking, with the preparations with the greatest amount of stacked membrane having the highest activity. Isolation with sorbitol or glycinebetaine based media did not alter this pattern, nor did assay in sorbitol or glycinebetaine. Mangrove thylakoids have a requirement for both a high osmotic strength and divalent cations for grana formation in vitro which may be related to the low water potential of the plant environment in vivo.
RESUMO
Phaseolus vulgaris (cv. Hawkesbury Wonder) was grown over a range of NaCl concentrations (0-150 mM), and the effects on growth, ion relations and photosynthetic performance were examined. Dry and fresh weight decreased with increasing external NaCl concentration while the root/shoot ratio increased. The Cl(-) concentration of leaf tissue increased linearly with increasing external NaCl concentration, as did K(+) concentration, although to a lesser degree. Increases in leaf Na(+) concentration occurred only at the higher external NaCl concentrations (â§100 mM). Increases in leaf Cl(-) were primarily balanced by increases in K(+) and Na(+). X-ray microanalysis of leaf cells from salinized plants showed that Cl(-) concentration was high in both the cell vacuole and chloroplast-cytoplasm (250-300 mM in both compartments for the most stressed plants), indicating a lack of effective intracellular ion compartmentation in this species. Salinity had little effect on the total nitrogen and ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39) content per unit leaf area. Chlorophyll per unit leaf area was reduced considerably by salt stress, however. Stomatal conductance declined substantially with salt stress such that the intercellular CO2 concentration (C i) was reduced by up to 30%. Salinization of plants was found to alter the δ(13)C value of leaves of Phaseolus by up to 5 and this change agreed quantitatively with that predicted by the theory relating carbon-isotope fractionation to the corresponding measured intercellular CO2 concentration. Salt stress also brought about a reduction in photosynthetic CO2 fixation independent of altered diffusional limitations. The initial slope of the photosynthesis versus C i response declined with salinity stress, indicating that the apparent in-vivo activity of RuBP carboxylase was decreased by up to 40% at high leaf Cl(-) concentrations. The quantum yield for net CO2 uptake was also reduced by salt stress.
RESUMO
The role of Cl(-) in photosynthetic O(2) evolution has been investigated by observing the (35)Cl NMR linewidth under a variety of conditions in aqueous suspensions of chloroplasts, primarily for the halophytes Avicennia germinans, Avicennia marina, and Aster tripolium but also for spinach. The line broadening shows there is weak, ionic binding of Cl(-) to thylakoids, the bound Cl(-) exchanging rapidly (>>10(4) sec(-1)) with free Cl(-) in solution. The binding is necessary for O(2) evolution to occur. Michaelis-Menten constants obtained from the Cl(-) dependence of the O(2) evolution rate are approximately 15-70 mM for the halophytes compared with 0.6 mM for spinach (0.5 mM with Br(-)). There appear to be two types of Cl(-) binding sites in halophytes, of which the stronger is the activator, at lower [Cl(-)], of O(2) evolution. The (35)Cl line broadening includes a nonspecific interaction, which becomes apparent at high Cl(-) concentrations (>/=0.5 M).
RESUMO
Carbon dioxide concentration during growth is commonly not considered to be a factor influencing the photochemical properties of plants. It was observed that fluorescence induction in Chlamydomonas reinhardii cells grown at air levels of CO2 was both qualitatively and quantitatively different from that of cells grown at 5% CO2. In the two cell types, measured at equivalent chlorophyll and irradiance levels, the fluorescence intensity and the ratio of the levels of peak fluorescence (Fp) to that of the initial fluorescence (Fo) were much lower in the air-adapted than in the 5% CO2 adapted cells. The maximum fluorescence (Fmax) in the presence of diuron was also lower for air-adapted cells. Roughly twice the light input was required for the air-adapted cells to give a fluorescence induction transient and intensity equivalent to that of the 5% CO2-adapted cells. Similar properties were observed in several other unicellular green algae and in cyanobacteria. Chlamydomonas grown under variable CO2 concentrations exhibit significant differences in photosynthetic carbon metabolism and are presumed to have altered energy requirements. The observed variation in fluorescence induction may be due to changes in the properties of the thylakoid reactions (e.g. cyclic electron flow) of Chlamydomonas cells, which may, in turn, be due to a response to the altered energy requirements.
RESUMO
Photosynthetic responses to irradiance by the grey mangrove, Avicennia marina (Forstk.) Vierh var. australasica (Walp.) Moldenke, were studied using seedlings grown under natural understory shade and exposed conditions as well as in the laboratory under high and low light regimes, i.e. 100% and 6% sunlight, respectively. Leaves in exposed locations were subjected to daylight quantum flux densities greater than 1,000 microeinsteins per square meter per second from 0900 to 1700 hours, whereas those in understory shade experienced only 30 to 120 microeinsteins per square meter per second, interrupted for brief periods by sunflecks ranging in quantum flux density from 800 to 1,500 microeinsteins per square meter per second. The low light regime was similar in light intensity to that of the understory environment, but lacked sunflecks.Leaves from the understory environment showed several properties of ;shade' leaves; i.e. they contained more chlorophyll on both a leaf area and fresh weight basis but had a lower specific weight and greater area than exposed leaves, and were enriched in chlorophyll b relative to a. However, there were no significant differences in either the gas exchange or leaf chlorophyll fluorescence characteristics of the two populations, both being typical of ;sun' leaves.Leaves grown in the laboratory under low and high light regimes had similar properties. However, light saturated assimilation rates in the leaves from the low light treatment were 20% less and became light saturated at a lower quantum flux density than those of leaves grown under the high light regime. The ecological significance of these results is discussed.
RESUMO
Cucumber plants (Cucumis sativus L.), grown at low quantum flux density (120-150 microeinsteins per square meter per second) were photoinhibited by a three-hour exposure in air to ten times the light intensity experienced during growth. Chloroplasts were isolated from photoinhibited and control leaves and the following activities determined: O(2) evolution in the presence of ferricyanide, photosystem I activity, noncyclic and cyclic photophosphorylation, and light-induced proton uptake. Chlorophyll and chloroplast absorbance spectra, and chloroplast fluorescence were also measured. It was found that photosystem II electron transport and non-cyclic photophosphorylation were inhibited by about 50%, while cyclic photophosphorylation was less inhibited and photosystem I electron transport and light-induced proton uptake were unaffected. Electron transport to methylviologen could not be fully restored by electron donation to photosystem II. Chloroplast fluorescence induction at room temperature was strongly reduced following photoinhibition. There was no difference in the absorption spectra of the extracted chlorophylls from control and photoinhibited chloroplasts, but an increase of the absorption in the blue wavelength region was observed in the photoinhibited chloroplasts. It is suggested that high light stress does not result in alteration of the membrane properties, as is the case in low-temperature stress for example, but affects directly the photosynthetic reaction centers, primarily of photosystem II.
RESUMO
In the study reported here, two different photoinhibitory phenomena were compared within a single plant species. Bean plants were grown in three different light intensities to simulate sun and shade environments. The effects of photoinhibitory treatments on in vivo CO(2) assimilation rates and in vitro chloroplast electron transport reactions were investigated and the extent to which carbon metabolism served to prevent photoinhibition was characterized. It was shown that the photoinhibition which follows exposure of intact leaflets of low light-grown bean plants to high light intensity in normal air is essentially similar to that which occurs when leaflets of plants grown in full sunlight are illuminated in the absence of CO(2) at low O(2) partial pressures.