Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Methods Mol Biol ; 2450: 649-662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359334

RESUMO

The sea anemone Nematostella vectensis has emerged as a powerful research model to understand at the gene regulatory network level, to what extend regeneration recapitulates embryonic development. Such comparison involves massive transcriptomic analysis, a routine approach for identifying differential gene expression. Here we present a workflow to build a user-friendly, mineable, and open-access database providing access to the scientific community to various RNAseq datasets.


Assuntos
Anêmonas-do-Mar , Animais , Bases de Dados Genéticas , Desenvolvimento Embrionário/genética , Expressão Gênica , Perfilação da Expressão Gênica
2.
NPJ Regen Med ; 7(1): 15, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149726

RESUMO

Homeostatic renal filtration relies on the integrity of podocytes, which function in glomerular filtration. These highly specialized cells are damaged in 90% of chronic kidney disease, representing the leading cause of end-stage renal failure. Although modest podocyte renewal has been documented in adult mice, the mechanisms regulating this process remain largely unknown and controversial. Using a mouse model of Adriamycin-induced nephropathy, we find that the recovery of filtration function requires up-regulation of the endogenous telomerase component TERT. Previous work has shown that transient overexpression of catalytically inactive TERT (i-TERTci mouse model) has an unexpected role in triggering dramatic podocyte proliferation and renewal. We therefore used this model to conduct specific and stochastic lineage-tracing strategies in combination with high throughput sequencing methods. These experiments provide evidence that TERT drives the activation and clonal expansion of podocyte progenitor cells. Our findings demonstrate that the adult kidney bears intrinsic regenerative capabilities involving the protein component of telomerase, paving the way for innovative research toward the development of chronic kidney disease therapeutics.

3.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163319

RESUMO

Over the past 25 years, the powerful combination of genome sequencing and bioinformatics analysis has played a crucial role in interpreting information encoded in bacterial genomes. High-throughput sequencing technologies have paved the way towards understanding an increasingly wide range of biological questions. This revolution has enabled advances in areas ranging from genome composition to how proteins interact with nucleic acids. This has created unprecedented opportunities through the integration of genomic data into clinics for the diagnosis of genetic traits associated with disease. Since then, these technologies have continued to evolve, and recently, long-read sequencing has overcome previous limitations in terms of accuracy, thus expanding its applications in genomics, transcriptomics and metagenomics. In this review, we describe a brief history of the bacterial genome sequencing revolution and its application in public health and molecular epidemiology. We present a chronology that encompasses the various technological developments: whole-genome shotgun sequencing, high-throughput sequencing, long-read sequencing. We mainly discuss the application of next-generation sequencing to decipher bacterial genomes. Secondly, we highlight how long-read sequencing technologies go beyond the limitations of traditional short-read sequencing. We intend to provide a description of the guiding principles of the 3rd generation sequencing applications and ongoing improvements in the field of microbial medical research.


Assuntos
Bactérias/genética , Genoma Bacteriano/genética , Animais , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Epidemiologia Molecular , Sequenciamento Completo do Genoma/métodos
4.
Microbiol Resour Announc ; 10(41): e0059721, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34647805

RESUMO

We report here the complete genome sequences of three Bacillus cereus group strains isolated from blood cultures from premature and immunocompromised infants hospitalized in intensive care units in three French hospitals. These complete genome sequences were obtained from a combination of Illumina HiSeq X Ten short reads and Oxford Nanopore MinION long reads.

5.
Aging Cell ; 19(3): e13097, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31991048

RESUMO

Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere-capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2-compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2-compromised human myotubes. Altogether, these results reveal a TRF2-SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism.


Assuntos
Envelhecimento/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sirtuína 3/metabolismo , Encurtamento do Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Adolescente , Adulto , Idoso , Animais , Células Cultivadas , Regulação para Baixo/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Adulto Jovem
6.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31000523

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with strong immunosuppressive activity that promote tumor growth. In this study, we describe a mechanism by which cancer cells control MDSCs in human cancers by upregulating TRF2, a protein required for telomere stability. Specifically, we showed that the TRF2 upregulation in cancer cells has extratelomeric roles in activating the expression of a network of genes involved in the biosynthesis of heparan sulfate proteoglycan, leading to profound changes in glycocalyx length and stiffness, as revealed by atomic force microscopy. This TRF2-dependent regulation facilitated the recruitment of MDSCs, their activation via the TLR2/MyD88/IL-6/STAT3 pathway leading to the inhibition of natural killer recruitment and cytotoxicity, and ultimately tumor progression and metastasis. The clinical relevance of these findings is supported by our analysis of cancer cohorts, which showed a correlation between high TRF2 expression and MDSC infiltration, which was inversely correlated with overall patient survival.


Assuntos
Glicocálix/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Evasão Tumoral/fisiologia , Animais , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glicocálix/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/fisiologia , Células NIH 3T3 , Neoplasias/genética , Neoplasias/mortalidade , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Evasão Tumoral/genética
7.
J Invest Dermatol ; 138(12): 2511-2521, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29906411

RESUMO

Skin homeostasis relies on fine-tuning of epidermis-dermis interactions and is affected by aging. While extracellular matrix (ECM) proteins, such as integrins, are involved in aging, the molecular basis of the skin changes needs to be investigated further. Here, we showed that integrin co-receptor, SLC3A2, required for cell proliferation, is expressed at the surface of resting dermal fibroblasts in young patients and is reduced drastically with aging. In vivo SLC3A2 dermal fibroblast deletion induced major skin phenotypes resembling premature aging. Knockout mice (3 months old) presented strong defects in skin elasticity due to altered ECM assembly, which impairs epidermal homeostasis. SLC3A2 dermal fibroblast loss led to an age-associated secretome profile, with 77% of identified proteins belonging to ECM and ECM-associated proteins. ECM not only contributes to skin mechanical properties, but it is also a reservoir of growth factors and bioactive molecules. We demonstrate that dermal fibroblast SLC3A2 is required for ECM to fully exert its structural and reservoir role allowing proper and efficient TGF-ß localization and activation. We identified SLC3A2 as a protective controller of dermal ECM stiffness and quality required to maintain the epidermis to dermis interface as functional and dynamic.


Assuntos
Senilidade Prematura/genética , Derme/patologia , Epitélio/fisiologia , Fibroblastos/fisiologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Animais , Proliferação de Células , Células Cultivadas , Proteínas da Matriz Extracelular/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Knockout , Transporte Proteico , Fator de Crescimento Transformador beta/metabolismo
8.
Mol Cell ; 70(3): 449-461.e5, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727617

RESUMO

Hard-to-replicate regions of chromosomes (e.g., pericentromeres, centromeres, and telomeres) impede replication fork progression, eventually leading, in the event of replication stress, to chromosome fragility, aging, and cancer. Our knowledge of the mechanisms controlling the stability of these regions is essentially limited to telomeres, where fragility is counteracted by the shelterin proteins. Here we show that the shelterin subunit TRF2 ensures progression of the replication fork through pericentromeric heterochromatin, but not centromeric chromatin. In a process involving its N-terminal basic domain, TRF2 binds to pericentromeric Satellite III sequences during S phase, allowing the recruitment of the G-quadruplex-resolving helicase RTEL1 to facilitate fork progression. We also show that TRF2 is required for the stability of other heterochromatic regions localized throughout the genome, paving the way for future research on heterochromatic replication and its relationship with aging and cancer.


Assuntos
Replicação do DNA/genética , Genoma/genética , Heterocromatina/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral , Centrômero/genética , Cromatina/genética , DNA Helicases/genética , Quadruplex G , Células HeLa , Humanos , Fase S/genética
9.
Genome Announc ; 5(18)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473389

RESUMO

Mycobacterium boenickei is a rapidly growing mycobacterium isolated for the first time from a leg wound in the United States. Its 6,506,908-bp draft genome exhibits a 66.77% G+C content, 6,279 protein-coding genes, and 59 predicted RNA genes. In silico DNA-DNA hybridization confirms its assignment to the Mycobacterium fortuitum complex.

10.
Microb Pathog ; 105: 63-67, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28188902

RESUMO

The in-laboratory contamination of the ancient samples hinders the result interpretation of the investigations in the field of paleomicrobiology. We had promoted the dental pulp as a sample that limits the risks of in-laboratory contamination of the ancient material. In this work, we measured the contamination of the dental pulp manipulated according to paleomicrobiology protocol, used as a source of a total DNA for metagenomics. First, total DNA extracted from two dog canines was sequenced using next generation sequencing. This yielded a total of 487,828 trimmed reads with a length of 227 ± 35 bp. Sequence analysis of the final dataset using Blast algorithm search and stringent thresholds for sequence identity and coverage against a database including both Canis lupus familiaris and Homo sapiens complete genomes showed that 95% of reads were assigned to C. familiaris whereas 0.03% was assigned to H. sapiens. In a second step, two teeth collected from two 12th century mammals were manipulated following the same protocol. A total of 13,890 trimmed reads with a 157 ± 67 bp length yielded 0-0.35% reads assigned to H. sapiens. This study indicates that the dental pulp is a useful for detecting the significant nucleic sequences in both modern and ancient samples.


Assuntos
DNA/isolamento & purificação , Polpa Dentária/química , Fósseis , Biologia Molecular/métodos , Paleontologia/métodos , Animais , Biologia Computacional , DNA/química , DNA/genética , Cães , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
11.
OMICS ; 20(4): 248-58, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27093109

RESUMO

Culturomics is a new omics subspecialty to map the microbial diversity of human gut, coupled with a taxono-genomic strategy. We report here the description of a new bacterial species using microbial culturomics: strain S5T, (= CSUR P1091=DSM 28586) isolated from a stool specimen of a 25-year-old obese patient from Saudi Arabia. The strain S5T was a Gram-positive, strictly aerobic rod, which was motile by a polar flagellum, spore-forming, and exhibited catalase and oxidase activities. It grows optimally at 37°C, with a pH of 7.5 and 10% of NaCl. 16S rRNA gene-based identification revealed that strain S5T has 98.6% 16S rRNA sequence similarity with the reference O. oncorhynchi, phylogenetically the closest validated Oceanobacillus species. Here, we further describe the phenotypic characteristics of this organism and its complete genome sequence and annotation. The 5,388,285 bp long genome exhibits a G+C content of 37.24% and contains 5109 protein-coding genes and 198 RNA genes. Based on the characteristics reported here, we propose classifying this novel bacterium as representative of a new species belonging to the genus Oceanobacillus, Oceanobacillus jeddahense sp. nov. In a broader context, it is noteworthy that halophilic bacteria have long been overlooked in the human gut, and their role in human health and disease has not yet been investigated. This study thus further underscores the usefulness of the culturomics approach exploring the bacterial diversity of the gut.


Assuntos
Bacillus/genética , Intestinos/microbiologia , Bacillus/isolamento & purificação , Humanos , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Front Microbiol ; 7: 340, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014253

RESUMO

The history of infectious diseases raised the plague as one of the most devastating for human beings. Far too often considered an ancient disease, the frequent resurgence of the plague has led to consider it as a reemerging disease in Madagascar, Algeria, Libya, and Congo. The genetic factors associated with the pathogenicity of Yersinia pestis, the causative agent of the plague, involve the acquisition of the pPCP1 plasmid that promotes host invasion through the expression of the virulence factor Pla. The surveillance of plague foci after the 2003 outbreak in Algeria resulted in a positive detection of the specific pla gene of Y. pestis in rodents. However, the phenotypic characterization of the isolate identified a Citrobacter koseri. The comparative genomics of our sequenced C. koseri URMITE genome revealed a mosaic gene structure resulting from the lifestyle of our isolate and provided evidence for gene exchanges with different enteric bacteria. The most striking was the acquisition of a continuous 2 kb genomic fragment containing the virulence factor Pla of the Y. pestis pPCP1 plasmid; however, the subcutaneous injection of the CKU strain in mice did not produce any pathogenic effect. Our findings demonstrate that fast molecular detection of plague using solely the pla gene is unsuitable and should rather require Y. pestis gene marker combinations. We also suggest that the evolutionary force that might govern the expression of pathogenicity can occur through the acquisition of virulence genes but could also require the loss or the inactivation of resident genes such as antivirulence genes.

14.
Artigo em Inglês | MEDLINE | ID: mdl-27014641

RESUMO

The study of amoeba-associated Chlamydiae is a dynamic field in which new species are increasingly reported. In the present work, we characterized the developmental cycle and analyzed the genome of a new member of this group associated with Vermamoeba vermiformis, we propose to name "Rubidus massiliensis." This bacterium is well-adapted to its amoeba host and do not reside inside of inclusion vacuoles after phagocytosis. It has a developmental cycle typical of this family of bacteria, with a transition from condensed elementary bodies to hypodense replicative reticulate bodies. Multiplication occurs through binary fission of the reticulate bodies. The genome of "R. massiliensis" consists of a 2.8 Mbp chromosome and two plasmids (pRm1, pRm2) consisting of 39,075 bp and 80,897 bp, respectively, a feature that is unique within this group. The Re-analysis of the Chlamydiales genomes including the one of "R. massiliensis" slightly modified the previous phylogeny of the tlc gene encoding the ADP/ATP translocase. Our analysis suggested that the tlc gene could have been transferred to plant and algal plastids before the transfer to Rickettsiales, and that this gene was probably duplicated several times.


Assuntos
Chlamydiaceae/classificação , Chlamydiaceae/genética , Genoma Bacteriano/genética , Lobosea/microbiologia , Sequência de Bases , DNA Bacteriano/genética , Especificidade de Hospedeiro , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vacúolos/microbiologia
15.
Emerg Infect Dis ; 22(3): 457-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26885624

RESUMO

Certain Bartonella species are known to cause afebrile bacteremia in humans and other mammals, including B. quintana, the agent of trench fever, and B. henselae, the agent of cat scratch disease. Reports have indicated that animal-associated Bartonella species may cause paucisymptomatic bacteremia and endocarditis in humans. We identified potentially zoonotic strains from 6 Bartonella species in samples from patients who had chronic, subjective symptoms and who reported tick bites. Three strains were B. henselae and 3 were from other animal-associated Bartonella spp. (B. doshiae, B. schoenbuchensis, and B. tribocorum). Genomic analysis of the isolated strains revealed differences from previously sequenced Bartonella strains. Our investigation identifed 3 novel Bartonella spp. strains with human pathogenic potential and showed that Bartonella spp. may be the cause of undifferentiated chronic illness in humans who have been bitten by ticks.


Assuntos
Infecções por Bartonella/microbiologia , Bartonella/isolamento & purificação , Zoonoses/microbiologia , Animais , Bartonella/classificação , Bartonella/genética , Infecções por Bartonella/transmissão , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paris , Picadas de Carrapatos
16.
Nat Commun ; 6: 10204, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667266

RESUMO

Carcinoma-associated fibroblasts (CAF) mediate the onset of a proinvasive tumour microenvironment. The proinflammatory cytokine LIF reprograms fibroblasts into a proinvasive phenotype, which promotes extracellular matrix remodelling and collective invasion of cancer cells. Here we unveil that exposure to LIF initiates an epigenetic switch leading to the constitutive activation of JAK1/STAT3 signalling, which results in sustained proinvasive activity of CAF. Mechanistically, p300-histone acetyltransferase acetylates STAT3, which, in turn, upregulates and activates the DNMT3b DNA methyltransferase. DNMT3b methylates CpG sites of the SHP-1 phosphatase promoter, which abrogates SHP-1 expression, and results in constitutive phosphorylation of JAK1. Sustained JAK1/STAT3 signalling is maintained by DNA methyltransferase DNMT1. Consistently, in human lung and head and neck carcinomas, STAT3 acetylation and phosphorylation are inversely correlated with SHP-1 expression. Combined inhibition of DNMT activities and JAK signalling, in vitro and in vivo, results in long-term reversion of CAF-associated proinvasive activity and restoration of the wild-type fibroblast phenotype.


Assuntos
Carcinogênese/metabolismo , Epigenômica , Fibroblastos/fisiologia , Neoplasias/metabolismo , Animais , Anticorpos Neutralizantes , Carcinogênese/genética , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/metabolismo , Interferência de RNA
17.
Genome Announc ; 3(6)2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26543131

RESUMO

Mycobacterium neworleansense is a rapid growing nontuberculosis species belonging to the Mycobacterium fortuitum complex. The draft genome of M. neworleansense ATCC 49404(T) comprises 6,287,317 bp exhibiting a 66.85% G+C content, 5,997 protein-coding genes, and 89 predicted RNA genes.

18.
Stand Genomic Sci ; 10: 91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26523201

RESUMO

Oceanobacillus picturae is a strain of a moderately halophilic bacterium, first isolated from a mural painting. We demonstrate, for the first time, the culture of human Oceanobacillus picturae, strain S1(T), whose genome is described here, from a stool sample collected from a 25-year-old Saoudian healthy individual. We used a slightly modified standard culture medium adding 100 g/L of NaCl. We provide a short description of this strain including its MALDI-TOF spectrum, the main identification tool currently used in clinical microbiology. The 3,675,175 bp long genome exhibits a G + C content of 39.15 % and contains 3666 protein-coding and 157 RNA genes. The draft genome sequence of Oceanobacillus picturae has a similar size to the Oceanobacillus kimchii (respectively 3.67 Mb versus 3.83 Mb). The G + C content was higher compared with Oceanobacillus kimchii (respectively 39.15 % and 35.2 %). Oceanobacillus picturae shared almost identical number of genes (3823 genes versus 3879 genes), with a similar ratio of genes per Mb (1041 genes/Mb versus 1012 genes/Mb). The genome sequencing of Oceanobacillus picturae strain S1 isolated for the first time in a human, will be added to the 778 genome projects from the gastrointestinal tract listed by the international consortium Human Microbiome Project.

19.
Biol Direct ; 10: 55, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26420254

RESUMO

BACKGROUND: Various methods are currently used to define species and are based on the phylogenetic marker 16S ribosomal RNA gene sequence, DNA-DNA hybridization and DNA GC content. However, these are restricted genetic tools and showed significant limitations. RESULTS: In this work, we describe an alternative method to build taxonomy by analyzing the pan-genome composition of different species of the Klebsiella genus. Klebsiella species are Gram-negative bacilli belonging to the large Enterobacteriaceae family. Interestingly, when comparing the core/pan-genome ratio; we found a clear discontinuous variation that can define a new species. CONCLUSIONS: Using this pan-genomic approach, we showed that Klebsiella pneumoniae subsp. ozaenae and Klebsiella pneumoniae subsp. rhinoscleromatis are species of the Klebsiella genus, rather than subspecies of Klebsiella pneumoniae. This pan-genomic analysis, helped to develop a new tool for defining species introducing a quantic perspective for taxonomy.


Assuntos
Classificação , Genoma Bacteriano , Genômica , Klebsiella/classificação , Klebsiella/genética , Filogenia
20.
Genome Announc ; 3(4)2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26251499

RESUMO

The Mycobacterium bohemicum strain is a nontuberculosis species mainly responsible for pediatric cervical lymphadenitis. The draft genome of M. bohemicum DSM 44277(T) comprises 5,097,190 bp exhibiting a 68.64% G+C content, 4,840 protein-coding genes, and 75 predicted RNA genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA