Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159507

RESUMO

Peristaltic movement of the intestine propels food down the length of the gastrointestinal tract to promote nutrient absorption. Interactions between intestinal macrophages and the enteric nervous system regulate gastrointestinal motility, yet we have an incomplete understanding of the molecular mediators of this crosstalk. Here, we identify complement component 1q (C1q) as a macrophage product that regulates gut motility. Macrophages were the predominant source of C1q in the mouse intestine and most extraintestinal tissues. Although C1q mediates the complement-mediated killing of bacteria in the bloodstream, we found that C1q was not essential for the immune defense of the intestine. Instead, C1q-expressing macrophages were located in the intestinal submucosal and myenteric plexuses where they were closely associated with enteric neurons and expressed surface markers characteristic of nerve-adjacent macrophages in other tissues. Mice with a macrophage-specific deletion of C1qa showed changes in enteric neuronal gene expression, increased neurogenic activity of peristalsis, and accelerated intestinal transit. Our findings identify C1q as a key regulator of gastrointestinal motility and provide enhanced insight into the crosstalk between macrophages and the enteric nervous system.


Assuntos
Complemento C1q , Sistema Nervoso Entérico , Camundongos , Animais , Complemento C1q/metabolismo , Motilidade Gastrointestinal/fisiologia , Macrófagos/metabolismo , Trato Gastrointestinal
2.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531387

RESUMO

CsrA is a posttranscriptional global regulator in Vibrio cholerae Although CsrA is critical for V. cholerae survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the csrA mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the V. cholerae growth cycle. We found that CsrA regulates 22% of the V. cholerae transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain how CsrA regulation affects such a large proportion of the V. cholerae transcriptome. Other direct targets include flrC, encoding a central regulator in flagellar gene expression, and aphA, encoding the virulence gene transcription factor AphA. We found that CsrA binds to the aphA mRNA both in vivo and in vitro, and CsrA significantly increases AphA protein synthesis. The increase in AphA was due to increased translation, not transcription, in the presence of CsrA, consistent with CsrA binding to the aphA transcript and enhancing its translation. CsrA is required for the virulence of V. cholerae and this study illustrates the central role of CsrA in virulence gene regulation.IMPORTANCEVibrio cholerae, a Gram-negative bacterium, is a natural inhabitant of the aqueous environment. However, once ingested, this bacterium can colonize the human host and cause the disease cholera. In order to successfully transition between its aqueous habitat and the human host, the bacterium must sense changes in its environment and rapidly alter gene expression. Global regulators, including CsrA, play an integral role in altering the expression of a large number of genes to promote adaptation and survival, which is required for intestinal colonization. We used transcriptomics and a directed CsrA-RNA coimmunoprecipitation to characterize the CsrA regulon and found that CsrA alters the expression of more than 800 transcripts in V. cholerae Processes regulated by CsrA include motility, the rugose phenotype, and virulence pathways. CsrA directly binds to the aphA transcript and positively regulates the production of the virulence regulator AphA. Thus, CsrA regulates multiple processes that have been linked to pathogenesis.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Ligação a RNA/fisiologia , Vibrio cholerae/genética , Regulação Bacteriana da Expressão Gênica , Regulon , Transativadores/genética , Transcriptoma , Vibrio cholerae/patogenicidade , Virulência
3.
Proc Natl Acad Sci U S A ; 117(21): 11715-11726, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398371

RESUMO

Campylobacter jejuni monitors intestinal metabolites produced by the host and microbiota to initiate intestinal colonization of avian and animal hosts for commensalism and infection of humans for diarrheal disease. We previously discovered that C. jejuni has the capacity to spatially discern different intestinal regions by sensing lactate and the short-chain fatty acids acetate and butyrate and then alter transcription of colonization factors appropriately for in vivo growth. In this study, we identified the C. jejuni butyrate-modulated regulon and discovered that the BumSR two-component signal transduction system (TCS) directs a response to butyrate by identifying mutants in a genetic screen defective for butyrate-modulated transcription. The BumSR TCS, which is important for infection of humans and optimal colonization of avian hosts, senses butyrate likely by indirect means to alter transcription of genes encoding important colonization determinants. Unlike many canonical TCSs, the predicted cytoplasmic sensor kinase BumS lacked in vitro autokinase activity, which would normally lead to phosphorylation of the cognate BumR response regulator. Instead, BumS has likely evolved mutations to naturally function as a phosphatase whose activity is influenced by exogenous butyrate to control the level of endogenous phosphorylation of BumR and its ability to alter transcription of target genes. To our knowledge, the BumSR TCS is the only bacterial signal transduction system identified so far that mediates responses to the microbiota-generated intestinal metabolite butyrate, an important factor for host intestinal health and homeostasis. Our findings suggest that butyrate sensing by this system is vital for C. jejuni colonization of multiple hosts.


Assuntos
Proteínas de Bactérias , Butiratos/metabolismo , Campylobacter jejuni , Regulação Bacteriana da Expressão Gênica/genética , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Galinhas , Humanos , Monoéster Fosfórico Hidrolases/genética , Transdução de Sinais/genética
4.
Proc Natl Acad Sci U S A ; 115(38): E8968-E8976, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126994

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC's response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion of fnr in ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.


Assuntos
Escherichia coli Enterotoxigênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Proteínas Ferro-Enxofre/genética , Adulto , Biofilmes , Diarreia/epidemiologia , Diarreia/microbiologia , Diarreia/prevenção & controle , Células Epiteliais/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Proteínas de Escherichia coli/metabolismo , Vacinas contra Escherichia coli/administração & dosagem , Feminino , Voluntários Saudáveis , Humanos , Intestinos/citologia , Intestinos/microbiologia , Proteínas Ferro-Enxofre/metabolismo , Masculino , Pessoa de Meia-Idade , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Adulto Jovem
5.
Nat Microbiol ; 3(4): 494-502, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29588538

RESUMO

Campylobacter jejuni infections are a leading cause of bacterial food-borne diarrhoeal illness worldwide, and Campylobacter infections in children are associated with stunted growth and therefore long-term deficits into adulthood. Despite this global impact on health and human capital, how zoonotic C. jejuni responds to the human host remains unclear. Unlike other intestinal pathogens, C. jejuni does not harbour pathogen-defining toxins that explicitly contribute to disease in humans. This makes understanding Campylobacter pathogenesis challenging and supports a broad examination of bacterial factors that contribute to C. jejuni infection. Here, we use a controlled human infection model to characterize C. jejuni transcriptional and genetic adaptations in vivo, along with a non-human primate infection model to validate our approach. We found that variation in 11 genes is associated with either acute or persistent human infections and includes products involved in host cell invasion, bile sensing and flagella modification, plus additional potential therapeutic targets. In particular, a functional version of the cell invasion protein A (cipA) gene product is strongly associated with persistently infecting bacteria and we identified its biochemical role in flagella modification. These data characterize the adaptive C. jejuni response to primate infections and suggest therapy design should consider the intrinsic differences between acute and persistently infecting bacteria. In addition, RNA sequencing revealed conserved responses during natural host commensalism and human infections. Thirty-nine genes were differentially regulated in vivo across hosts, lifestyles and C. jejuni strains. This conserved in vivo response highlights important C. jejuni survival mechanisms such as iron acquisition and evasion of the host mucosal immune response. These advances highlight pathogen adaptability across host species and demonstrate the utility of multidisciplinary collaborations in future clinical trials to study pathogens in vivo.


Assuntos
Proteínas de Bactérias/genética , Infecções por Campylobacter/patologia , Campylobacter jejuni/genética , Campylobacter jejuni/patogenicidade , Flagelos/genética , Doenças Transmitidas por Alimentos/patologia , Proteínas de Membrana/genética , Animais , Azitromicina/uso terapêutico , Infecções por Campylobacter/tratamento farmacológico , Infecções por Campylobacter/microbiologia , Galinhas/microbiologia , Ciprofloxacina/uso terapêutico , Doenças Transmitidas por Alimentos/tratamento farmacológico , Doenças Transmitidas por Alimentos/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Variação Genética/genética , Humanos , Intestinos/microbiologia , Intestinos/patologia , Rifaximina/uso terapêutico
6.
mBio ; 9(1)2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437928

RESUMO

Quaternary amine compounds (QAC) are potent antimicrobials used to prevent the spread of pathogenic bacteria. While they are known for their membrane-damaging properties, QAC action has been suggested to extend beyond the surface to intracellular targets. Here we characterize the range of action of the QAC biocide benzalkonium chloride (BZK) against the bacterial pathogen Acinetobacter baumannii At high concentrations, BZK acts through membrane disruption, but at low concentrations we show that wide-spread protein aggregation is associated with BZK-induced cell death. Resistance to BZK is found to develop through ribosomal protein mutations that protect A. baumannii against BZK-induced protein aggregation. The multifunctional impact of BZK led us to discover that alternative QAC structures, with low human toxicity, retain potent action against multidrug-resistant A. baumannii, Staphylococcus aureus, and Clostridium difficile and present opportunities for their development as antibiotics.IMPORTANCE Quaternary amine compounds (QACs) are widely used to prevent the spread of bacterial pathogens, but our understanding of their mode of action is incomplete. Here we describe disruption of bacterial proteostasis as an unrecognized action of QAC antimicrobial action and uncover the potential of diverse QAC structures to act as multitarget antibiotics.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Compostos de Benzalcônio/farmacologia , Agregados Proteicos , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
7.
Mol Microbiol ; 106(4): 582-596, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28906060

RESUMO

In the environment and during infection, the human intestinal pathogen Vibrio cholerae must overcome noxious compounds that damage the bacterial outer membrane. The El Tor and classical biotypes of O1 V. cholerae show striking differences in their resistance to membrane disrupting cationic antimicrobial peptides (CAMPs), such as polymyxins. The classical biotype is susceptible to CAMPs, but current pandemic El Tor biotype isolates gain CAMP resistance by altering the net charge of their cell surface through glycine modification of lipid A. Here we report a second lipid A modification mechanism that only functions in the V. cholerae El Tor biotype. We identify a functional EptA ortholog responsible for the transfer of the amino-residue phosphoethanolamine (pEtN) to the lipid A of V. cholerae El Tor that is not functional in the classical biotype. We previously reported that mildly acidic growth conditions (pH 5.8) downregulate expression of genes encoding the glycine modification machinery. In this report, growth at pH 5.8 increases expression of eptA with concomitant pEtN modification suggesting coordinated regulation of these LPS modification systems. Similarly, efficient pEtN lipid A substitution is seen in the absence of lipid A glycinylation. We further demonstrate EptA orthologs from non-cholerae Vibrio species are functional.


Assuntos
Lipídeo A/metabolismo , Lipopolissacarídeos/metabolismo , Vibrio cholerae/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Etanolaminas/metabolismo , Glicina/metabolismo , Humanos , Lipídeo A/biossíntese , Lipopolissacarídeos/genética , Vibrio cholerae/genética
8.
Proc Natl Acad Sci U S A ; 113(41): E6228-E6237, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27681618

RESUMO

The Gram-negative bacterial outer membrane fortifies the cell against environmental toxins including antibiotics. Unique glycolipids called lipopolysaccharide/lipooligosaccharide (LPS/LOS) are enriched in the cell-surface monolayer of the outer membrane and promote antimicrobial resistance. Colistin, which targets the lipid A domain of LPS/LOS to lyse the cell, is the last-line treatment for multidrug-resistant Gram-negative infections. Lipid A is essential for the survival of most Gram-negative bacteria, but colistin-resistant Acinetobacter baumannii lacking lipid A were isolated after colistin exposure. Previously, strain ATCC 19606 was the only A. baumannii strain demonstrated to subsist without lipid A. Here, we show that other A. baumannii strains can also survive without lipid A, but some cannot, affording a unique model to study endotoxin essentiality. We assessed the capacity of 15 clinical A. baumannii isolates including 9 recent clinical isolates to develop colistin resistance through inactivation of the lipid A biosynthetic pathway, the products of which assemble the LOS precursor. Our investigation determined that expression of the well-conserved penicillin-binding protein (PBP) 1A, prevented LOS-deficient colony isolation. The glycosyltransferase activity of PBP1A, which aids in the polymerization of the peptidoglycan cell wall, was lethal to LOS-deficient A. baumannii Global transcriptomic analysis of a PBP1A-deficient mutant and four LOS-deficient A. baumannii strains showed a concomitant increase in transcription of lipoproteins and their transporters. Examination of the LOS-deficient A. baumannii cell surface demonstrated that specific lipoproteins were overexpressed and decorated the cell surface, potentially compensating for LOS removal. This work expands our knowledge of lipid A essentiality and elucidates a drug resistance mechanism.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Colistina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Lipopolissacarídeos/deficiência , Proteínas de Ligação às Penicilinas/metabolismo , Acinetobacter baumannii/genética , Membrana Celular/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Lipopolissacarídeos/biossíntese , Testes de Sensibilidade Microbiana , Análise de Sequência de RNA , Transcrição Gênica/efeitos dos fármacos
9.
Annu Rev Microbiol ; 70: 255-78, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27359214

RESUMO

Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.


Assuntos
Membrana Celular/metabolismo , Bactérias Gram-Negativas/metabolismo , Bicamadas Lipídicas/química , Membrana Celular/química , Membrana Celular/genética , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/genética , Bicamadas Lipídicas/metabolismo
11.
Antimicrob Agents Chemother ; 59(4): 2051-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605366

RESUMO

In Salmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. While Escherichia coli encodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from the S. enterica protein. However, our laboratory previously observed that low concentrations of Mg(2+), a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-type E. coli (C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444-1460, 2010, http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate that pmrD is required for modification of the lipid A domain of E. coli lipopolysaccharide (LPS) under low-Mg(2+) growth conditions. Further, RNA sequencing shows that E. coli pmrD influences the expression of pmrA and its downstream targets, including genes coding for the modification enzymes that transfer pEtN and l-Ara4N to the lipid A molecule. In line with these findings, a pmrD mutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB in E. coli than previously understood.


Assuntos
Farmacorresistência Bacteriana/genética , Endotoxinas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Antibacterianos/farmacologia , Clonagem Molecular , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Lipídeo A/metabolismo , Lipopolissacarídeos/metabolismo , Magnésio/metabolismo , Mutação/genética , Fosfatidiletanolaminas/metabolismo , Polimixina B/farmacologia , RNA Bacteriano/genética
12.
mBio ; 5(6)2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25538196

RESUMO

UNLABELLED: The bacterial cell surface is the first structure the host immune system targets to prevent infection. Cationic antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS) molecules. We recently reported that modern strains of the global intestinal pathogen Vibrio cholerae modify the anionic lipid A domain of LPS with a novel moiety, amino acids. Remarkably, glycine or diglycine addition to lipid A alters the surface charge of the bacteria to help evade the cationic antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. cholerae are unknown. Here, we identify a novel two-component system that regulates lipid A glycine modification by responding to important biological cues associated with pathogenesis, including bile, mildly acidic pH, and cationic antimicrobial peptides. The histidine kinase Vc1319 (VprB) and the response regulator Vc1320 (VprA) respond to these signals and are required for the expression of the almEFG operon that encodes the genes essential for glycine modification of lipid A. Importantly, both the newly identified two-component system and the lipid A modification machinery are required for colonization of the mammalian host. This study demonstrates how V. cholerae uses a previously unknown regulatory network, independent of well-studied V. cholerae virulence factors and regulators, to respond to the host environment and cause infection. IMPORTANCE: Vibrio cholerae, the etiological agent of cholera disease, infects millions of people every year. V. cholerae El Tor and classical biotypes have been responsible for all cholera pandemics. The El Tor biotype responsible for the current seventh pandemic has displaced the classical biotype worldwide and is highly resistant to cationic antimicrobial peptides, like polymyxin B. This resistance arises from the attachment of one or two glycine residues to the lipid A domain of lipopolysaccharide, a major surface component of Gram-negative bacteria. Here, we identify the VprAB two-component system that regulates the charge of the bacterial surface by directly controlling the expression of genes required for glycine addition to lipid A. The VprAB-dependent lipid A modification confers polymyxin B resistance and contributes significantly to pathogenesis. This finding is relevant for understanding how Vibrio cholerae has evolved mechanisms to facilitate the evasion of the host immune system and increase bacterial fitness.


Assuntos
Regulação Bacteriana da Expressão Gênica , Lipídeo A/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Vibrio cholerae O1/genética , Fatores de Virulência/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bile/metabolismo , Histidina Quinase , Humanos , Concentração de Íons de Hidrogênio , Lipídeo A/toxicidade , Proteínas Quinases/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Vibrio cholerae O1/efeitos dos fármacos , Vibrio cholerae O1/crescimento & desenvolvimento , Vibrio cholerae O1/fisiologia , Virulência , Fatores de Virulência/toxicidade
13.
J Bacteriol ; 191(21): 6539-49, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19717601

RESUMO

Chromosomal DNA replication is dependent on processive DNA synthesis. Across the three domains of life and in certain viruses, a toroidal sliding clamp confers processivity to replicative DNA polymerases by encircling the DNA and engaging the polymerase in protein/protein interactions. Sliding clamps are ring-shaped; therefore, they have cognate clamp loaders that open and load them onto DNA. Here we use biochemical and mutational analyses to study the structure/function of the Methanosarcina acetivorans clamp loader or replication factor C (RFC) homolog. M. acetivorans RFC (RFC(Ma)), which represents an intermediate between the common archaeal RFC and the eukaryotic RFC, comprises two different small subunits (RFCS1 and RFCS2) and a large subunit (RFCL). Size exclusion chromatography suggested that RFCS1 exists in oligomeric states depending on protein concentration, while RFCS2 exists as a monomer. Protein complexes of RFCS1/RFCS2 formed in solution; however, they failed to stimulate DNA synthesis by a cognate DNA polymerase in the presence of its clamp. Determination of the subunit composition and previous mutational analysis allowed the prediction of the spatial distribution of subunits in this new member of the clamp loader family. Three RFCS1 subunits are flanked by an RFCS2 and an RFCL. The spatial distribution is, therefore, reminiscent of the minimal Escherichia coli clamp loader that exists in space as three gamma-subunits (motor) flanked by the delta' (stator) and the delta (wrench) subunits. Mutational analysis, however, suggested that the similarity between the two clamp loaders does not translate into the complete conservation of the functions of individual subunits within the RFC(Ma) complex.


Assuntos
Proteínas Arqueais/metabolismo , Methanosarcina/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Cromossomos de Archaea , Clonagem Molecular , Replicação do DNA , DNA Arqueal/genética , Regulação da Expressão Gênica/fisiologia , Methanosarcina/genética , Dados de Sequência Molecular , Mutação , Conformação Proteica , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA