Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Immunol ; 14: 1272809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901222

RESUMO

Background: The immune system, composed of organs, tissues, cells, and proteins, is the key to protecting the body from external biological attacks and inflammation. The latter occurs in several pathologies, such as cancers, type 1 diabetes, and human immunodeficiency virus infection. Immunophenotyping by flow cytometry is the method of choice for diagnosing these pathologies. Under inflammatory conditions, the peripheral blood mononuclear cells (PBMCs) are partially activated and generate intracellular pathways involving Ca2+-dependent signaling cascades leading to transcription factor expression. Ca2+ signaling is typically studied by microscopy in cell lines but can present some limitations to explore human PBMCs, where flow cytometry can be a good alternative. Objective: In this review, we dived into the research field of inflammation and Ca2+ signaling in PBMCs. We aimed to investigate the structure and evolution of this field in a physio-pathological context, and then we focused our review on flow cytometry analysis of Ca2+ fluxes in PBMCs. Methods: From 1984 to 2022, 3865 articles on inflammation and Ca2+ signaling in PBMCs were published, according to The Clarivate Web of Science (WOS) database used in this review. A bibliometric study was designed for this collection and consisted of a co-citation and bibliographic coupling analysis. Results: The co-citation analysis was performed on 133 articles: 4 clusters highlighted the global context of Ca2+ homeostasis, including chemical probe development, identification of the leading players in Ca2+ signaling, and the link with chemokine production in immune cell function. Next, the bibliographic coupling analysis combined 998 articles in 8 clusters. This analysis outlined the mechanisms of PBMC activation, from signal integration to cellular response. Further explorations of the bibliographic coupling network, focusing on flow cytometry, revealed 21 articles measuring cytosolic Ca2+ in PBMCs, with only 5 since 2016. This final query showed that Ca2+ signaling analysis in human PBMCs using flow cytometry is still underdeveloped and investigates mainly the cytosolic Ca2+ compartment. Conclusion: Our review uncovers remaining knowledge gaps of intracellular players involved in Ca2+ signaling in PBMCs, such as reticulum and mitochondria, and presents flow cytometry as a solid option to supplement gold-standard microscopy studies.


Assuntos
Leucócitos Mononucleares , Transdução de Sinais , Humanos , Leucócitos Mononucleares/metabolismo , Citometria de Fluxo/métodos , Linhagem Celular , Inflamação/metabolismo
2.
Cells ; 12(18)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759544

RESUMO

The Ca2+ release in microdomains formed by intercompartmental contacts, such as mitochondria-associated endoplasmic reticulum membranes (MAMs), encodes a signal that contributes to Ca2+ homeostasis and cell fate control. However, the composition and function of MAMs remain to be fully defined. Here, we focused on the transient receptor potential vanilloid 1 (TRPV1), a Ca2+-permeable ion channel and a polymodal nociceptor. We found TRPV1 channels in the reticular membrane, including some at MAMs, in a rat cardiomyoblast cell line (SV40-transformed H9c2) by Western blotting, immunostaining, cell fractionation, and proximity ligation assay. We used chemical and genetic probes to perform Ca2+ imaging in four cellular compartments: the endoplasmic reticulum (ER), cytoplasm, mitochondrial matrix, and mitochondrial surface. Our results showed that the ER Ca2+ released through TRPV1 channels is detected at the mitochondrial outer membrane and transferred to the mitochondria. Finally, we observed that prolonged TRPV1 modulation for 30 min alters the intracellular Ca2+ equilibrium and influences the MAM structure or the hypoxia/reoxygenation-induced cell death. Thus, our study provides the first evidence that TRPV1 channels contribute to MAM Ca2+ exchanges.


Assuntos
Antineoplásicos , Canais de Potencial de Receptor Transitório , Animais , Ratos , Mitocôndrias , Retículo Endoplasmático , Linhagem Celular , Estresse do Retículo Endoplasmático
3.
Front Cardiovasc Med ; 10: 1190857, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37539088

RESUMO

Background: The inflammatory process underlying atrial myopathy may affect the inflammatory response activated in acute ischemic stroke (AIS). Objectives: We aimed to assess whether left atrial enlargement (LAE) as a marker of atrial myopathy is associated with a different profile of circulating inflammatory markers in AIS patients. Methods: HIBISCUS-STROKE is a cohort study including anterior circulation AIS patients treated with mechanical thrombectomy following MRI. Ten circulating inflammatory markers were measured at admission and 6, 24, and 48 h after admission. LAE was defined as a left atrial volume index (LAVi) ≥34 ml/m2. A multiple logistic regression model was performed to detect an independent association between the area under the curve (AUC) of these markers and LAE. Results: We included 143 patients. Of them, 85 (59.4%) had LAE. On univariable analysis, we found that patients with LAE had higher soluble form suppression of tumorigenicity 2 (sST2), soluble tumor necrosis factor receptor I (sTNFR1), and vascular cellular adhesion molecule-1 (VCAM-1) AUC, were older, mostly female, had a higher National Institutes of Health Stroke Scale (NIHSS) score and blood glucose level at admission, had more often hypertension, and a cardioembolic source of AIS, such as atrial fibrillation, while they were less frequently current smokers and had a lower rate of tandem occlusion than patients without LAE. On multivariable analysis, we found that among circulating inflammatory markers, only high VCAM-1 (OR: 9.13, 95% CI: 3.21-25.9) and sST2 (OR: 3.40, 95% CI: 1.68-6.86) AUC remained associated with LAE. Conclusions: High VCAM-1 and sST2 levels within the first 48 h are associated with LAE in AIS patients.

4.
Nat Commun ; 14(1): 3346, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291092

RESUMO

Despite advances in cardioprotection, new therapeutic strategies capable of preventing ischemia-reperfusion injury of patients are still needed. Here, we discover that sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA2) phosphorylation at serine 663 is a clinical and pathophysiological event of cardiac function. Indeed, the phosphorylation level of SERCA2 at serine 663 is increased in ischemic hearts of patients and mouse. Analyses on different human cell lines indicate that preventing serine 663 phosphorylation significantly increases SERCA2 activity and protects against cell death, by counteracting cytosolic and mitochondrial Ca2+ overload. By identifying the phosphorylation level of SERCA2 at serine 663 as an essential regulator of SERCA2 activity, Ca2+ homeostasis and infarct size, these data contribute to a more comprehensive understanding of the excitation/contraction coupling of cardiomyocytes and establish the pathophysiological role and the therapeutic potential of SERCA2 modulation in acute myocardial infarction, based on the hotspot phosphorylation level of SERCA2 at serine 663 residue.


Assuntos
Infarto do Miocárdio , Miocárdio , Animais , Humanos , Camundongos , Cálcio/metabolismo , Homeostase , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
Life (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36983862

RESUMO

RATIONALE: Mitochondria are key organelles involved in cell survival and death during the acute phenomena of myocardial ischemia-reperfusion (i.e., myocardial infarction). To investigate the functions of isolated mitochondria such as calcium retention capacity, oxidative phosphorylation, and reactive oxygen species (ROS) production, already established methods are based on extramitochondrial measurements of the whole mitochondria population. OBJECTIVE: The aim of this study was to develop a reliable and well-characterized method for multiparametric analysis of isolated single mitochondrion by flow cytometry (FC) in the context of myocardial infarction. The advantage of FC is the possibility to give a simultaneous analysis of morphological parameters (side and forward scatters: SSC and FSC) for each mitochondrion, combined with intramitochondrial measurements of several biological markers, such as ROS production or membrane potential (Δφm), using specific fluorescent probes. METHODS AND RESULTS: For this study, a rat model of ischemia-reperfusion and a protective approach of post-conditioning using low reperfusion pressure was used. Thanks to the use of specific probes (NAO, MTR, TMRM, DilC1, and DHR123) combined with flow cytometry, we propose a method: (i) to identify mitochondrial populations of interest based on quality criteria (NAO/TMRM double staining); (ii) to monitor their morphological criteria, especially during swelling due to calcium overload; and (iii) to compare mitochondrial functions (membrane potential and ROS production) in different experimental groups. Applied to mitochondria from ischemic hearts, these measurements revealed that individual mitochondria are altered and that cardioprotection by low-pressure reperfusion reduces damage, as expected. CONCLUSIONS: Our results highlight FC as a reliable and sensitive method to investigate changes in mitochondrial functions and morphology in pathological conditions that disrupts their activity such as the case in ischemia-reperfusion. This methodological approach can be extended to other pathologies involving mitochondrial dysfunctions. Moreover, FC offers the possibility to work with very small amounts of isolated mitochondria, a factor that may limit the use of classical methods.

6.
Neurotherapeutics ; 20(3): 789-802, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36976495

RESUMO

Reperfusion therapies in acute ischemic stroke have demonstrated their efficacy in promoting clinical recovery. However, ischemia/reperfusion injury and related inflammation remain a major challenge in patient clinical management. We evaluated the spatio-temporal evolution of inflammation using sequential clinical [11C]PK11195 PET-MRI in a non-human primate (NHP) stroke model mimicking endovascular thrombectomy (EVT) with a neuroprotective cyclosporine A (CsA) treatment. The NHP underwent a 110-min transient endovascular middle cerebral artery occlusion. We acquired [11C]PK11195 dynamic PET-MR imaging at baseline, 7 and 30 days after intervention. Individual voxel-wise analysis was performed thanks to a baseline scan database. We quantified [11C]PK11195 in anatomical regions and in lesioned areas defined on per-occlusion MR diffusion-weighted imaging and perfusion [15O2]H2OPET imaging. [11C]PK11195 parametric maps showed a clear uptake overlapping the lesion core at D7, which further increased at D30. Voxel-wise analysis identified individuals with significant inflammation at D30, with voxels located within the most severe diffusion reduction area during occlusion, mainly in the putamen. The quantitative analysis revealed that thalamic inflammation lasted until D30 and was significantly reduced in the CsA-treated group compared to the placebo. In conclusion, we showed that chronic inflammation matched ADC decrease at occlusion time, a region exposed to an initial burst of damage-associated molecular patterns, in an NHP stroke model mimicking EVT. We described secondary thalamic inflammation and the protective effect of CsA in this region. We propose that major ADC drop in the putamen during occlusion may identify individuals who could benefit from early personalized treatment targeting inflammation.


Assuntos
Isquemia Encefálica , Encefalite , AVC Isquêmico , Acidente Vascular Cerebral , Animais , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/tratamento farmacológico , Trombectomia/métodos , Primatas , Inflamação/diagnóstico por imagem , Isquemia Encefálica/terapia , Isquemia Encefálica/tratamento farmacológico , Resultado do Tratamento
7.
Nanotheranostics ; 7(2): 176-186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793350

RESUMO

Background: The objective of this study was to demonstrate that synchrotron K-edge subtraction tomography (SKES-CT) can simultaneously track therapeutic cells and their encapsulating carrier, in vivo, in a rat model of focal brain injury using a dual-contrast agent approach. The second objective was to determine if SKES-CT could be used as a reference method for spectral photon counting tomography (SPCCT). Methods: Phantoms containing different concentrations of gold and iodine nanoparticles (AuNPS/INPs) were imaged with SKES-CT and SPCCT to assess their performances. A pre-clinical study was performed in rats with focal cerebral injury which intracerebrally received AuNPs-labelled therapeutic cells encapsulated in a INPs-labelled scaffold. Animals were imaged in vivo with SKES-CT and back-to-back with SPCCT. Results: SKES-CT revealed to be reliable for quantification of gold and iodine, whether alone or mixed. In the preclinical model, SKES-CT showed that AuNPs remained at the site of cell injection, while INPs expanded within and/or along the lesion border, suggesting dissociation of both components in the first days post-administration. Compared to SKES-CT, SPCCT was able to correctly locate gold, but not completely located iodine. When SKES-CT was used as reference, SPCCT gold quantification appeared very accurate both in vitro and in vivo. Iodine quantification by SPCCT was also quite accurate, albeit less so than for gold. Conclusion: We here provide the proof-of-concept that SKES-CT is a novel method of choice for performing dual-contrast agent imaging in the context of brain regenerative therapy. SKES-CT may also serve as ground truth for emerging technologies such as multicolour clinical SPCCT.


Assuntos
Lesões Encefálicas , Iodo , Nanopartículas Metálicas , Ratos , Animais , Meios de Contraste , Ouro , Síncrotrons , Tomografia Computadorizada por Raios X/métodos , Lesões Encefálicas/diagnóstico por imagem , Lesões Encefálicas/terapia
8.
Neurology ; 99(18): e2063-e2071, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316128

RESUMO

BACKGROUND AND OBJECTIVES: The objective of this study was to assess the relationship between blood biomarkers of inflammation and lesion growth within the penumbra in acute ischemic stroke (AIS) patients treated with mechanical thrombectomy (MT). METHODS: The HIBISCUS-STROKE cohort enrolled patients admitted in the Lyon Stroke Center for an anterior circulation AIS treated with MT after brain MRI assessment. Lesion growth within the penumbra was assessed on day 6 MRI using a voxel-based nonlinear coregistration method and dichotomized into low and high according to the median value. C-reactive protein, interleukin (IL)-6, IL-8, IL-10, monocyte chemoattractant protein-1, soluble tumor necrosis factor receptor I, soluble form suppression of tumorigenicity 2 (sST2), soluble P-selectin, vascular cellular adhesion molecule-1, and matrix metalloproteinase-9 were measured in sera at 4 time points within the first 48 hours. Reperfusion was considered as successful if Thrombolysis in Cerebral Infarction score was 2b/2c/3. A multiple logistic regression model was performed to detect any association between area under the curve (AUC) of these biomarkers within the first 48 hours and a high lesion growth within the penumbra. RESULTS: Ninety patients were included. The median lesion growth within the penumbra was 2.3 (0.7-6.2) mL. On multivariable analysis, a high sST2 AUC (OR 3.77, 95% CI 1.36-10.46), a high baseline DWI volume (OR 3.65, 95% CI 1.32-10.12), and a lack of successful reperfusion (OR 0.19, 95% CI 0.04-0.92) were associated with a high lesion growth within the penumbra. When restricting analyses to patients with successful reperfusion (n = 76), a high sST2 AUC (OR 5.03, 95% CI 1.64-15.40), a high baseline DWI volume (OR 3.74, 95% CI 1.22-11.53), and a high penumbra volume (OR 3.25, 95% CI 1.10-9.57) remained associated with a high lesion growth within the penumbra. DISCUSSION: High sST2 levels within the first 48 hours are associated with a high lesion growth within the penumbra.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/cirurgia , Trombectomia/métodos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/cirurgia , Resultado do Tratamento , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/cirurgia , Biomarcadores , Inflamação/diagnóstico por imagem
9.
J Neuroimmunol ; 371: 577934, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961224

RESUMO

Inflammation is involved in small vessel disease (SVD). We aim to clarify whether inflammation related to white matter hyperintensities (WMH), a key component of SVD, may affect the inflammatory response in acute ischemic stroke (AIS) patients. For this, we sequentially measured 10 circulating inflammatory markers and assessed WMH burden on admission MRI in AIS patients treated with thrombectomy. Of 149 patients, 57 (38.3%) had a high WMH burden (Fazekas≥3). A high WMH burden was associated with 4 markers levels but this association did not remain following multivariable analyses. WMH burden is not associated with a specific inflammatory profile in AIS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Substância Branca , Biomarcadores , Isquemia Encefálica/complicações , Isquemia Encefálica/diagnóstico por imagem , Humanos , Inflamação/complicações , Inflamação/diagnóstico por imagem , AVC Isquêmico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
10.
Biomed Opt Express ; 13(3): 1620-1639, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35415001

RESUMO

White-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments. The purpose of this study was to propose an approach that enables myelin fibers to be mapped in the whole rodent brain with microscopic resolution and without the need for strenuous staining. With this aim, we coupled in-line (propagation-based) X-ray phase-contrast tomography (XPCT) to ethanol-induced brain sample dehydration. We here provide the proof-of-concept that this approach enhances myelinated axons in rodent and human brain tissue. In addition, we demonstrated that white-matter injuries could be detected and quantified with this approach, using three animal models: ischemic stroke, premature birth and multiple sclerosis. Furthermore, in analogy to diffusion tensor imaging (DTI), we retrieved fiber directions and DTI-like diffusion metrics from our XPCT data to quantitatively characterize white-matter microstructure. Finally, we showed that this non-destructive approach was compatible with subsequent complementary brain sample analysis by conventional histology. In-line XPCT might thus become a novel gold-standard for investigating white-matter injury in the intact brain. This is Part I of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part II shows how in-line XPCT enables the whole-brain 3D morphometric analysis of amyloid- ß (A ß ) plaques.

11.
Stroke ; 53(7): 2249-2259, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35354295

RESUMO

BACKGROUND: Aging is associated with a chronic low-grade inflammatory state. This condition may affect the acute inflammatory response involved in ST-segment-elevation myocardial infarction (STEMI) or acute ischemic stroke (AIS). We sought to compare the profile of a set of circulating inflammatory markers between young and older patients admitted for STEMI or AIS. METHODS: HIBISCUS-STEMI (Cohort of Patients to Identify Biological and Imaging Markers of Cardiovascular Outcomes in ST Elevation Myocardial Infarction) and HIBISCUS-STROKE (Cohort of Patients to Identify Biological and Imaging Markers of Cardiovascular Outcomes in Stroke) are 2 cohort studies that enrolled patients with STEMI treated with primary percutaneous coronary intervention in the cardiac intensive care unit of Lyon and patients with AIS treated with mechanical thrombectomy in the Lyon Stroke Center, respectively from 2016 to 2019. Patients were classified as older if they were ≥65 years and as young if they were <65 years. In both cohorts, CRP (C-reactive protein), IL (interleukin)-6, IL-8, IL-10, MCP (monocyte chemoattractant protein), sTNF-RI (soluble tumor necrosis factor receptor I), sST2 (soluble form suppression of tumorigenicity 2), and VCAM-1 (vascular cellular adhesion molecule-1) were measured on serum collected at 5 time points using enzyme-linked immunosorbent assay. A multiple logistic regression model was performed to detect an association between area under the curve of circulating inflammatory markers within the first 48 hours and older age. RESULTS: A total of 260 patients with STEMI and 164 patients with AIS were included. Of them, there were 76 (29%) and 105 (64%) older patients with STEMI and AIS, respectively. Following multivariable analysis, a high area under the curve of IL-6 and sTNF-RI, a low lymphocyte count, and a high neutrophil-lymphocyte ratio at 24 hours were associated with older age in patients with STEMI and AIS. CONCLUSIONS: Older patients had higher IL-6 and sTFN-RI levels within the first 48 hours associated with a lower lymphocyte count and a higher neutrophil-lymphocyte ratio at 24 hours in both cohorts.


Assuntos
AVC Isquêmico , Infarto do Miocárdio com Supradesnível do Segmento ST , Síndrome de Resposta Inflamatória Sistêmica , Idoso , Biomarcadores/análise , Proteína C-Reativa , Humanos , Interleucina-6 , AVC Isquêmico/imunologia , AVC Isquêmico/terapia , Pessoa de Meia-Idade , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST/imunologia , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Acidente Vascular Cerebral/terapia , Síndrome de Resposta Inflamatória Sistêmica/imunologia
12.
Cells ; 11(6)2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35326440

RESUMO

Hypothermia provides an effective neuro and cardio-protection in clinical settings implying ischemia/reperfusion injury (I/R). At the onset of reperfusion, succinate-induced reactive oxygen species (ROS) production, impaired oxidative phosphorylation (OXPHOS), and decreased Ca2+ retention capacity (CRC) concur to mitochondrial damages. We explored the effects of temperature from 6 to 37 °C on OXPHOS, ROS production, and CRC, using isolated mitochondria from mouse brain and heart. Oxygen consumption and ROS production was gradually inhibited when cooling from 37 to 6 °C in brain mitochondria (BM) and heart mitochondria (HM). The decrease in ROS production was gradual in BM but steeper between 31 and 20 °C in HM. In respiring mitochondria, the gradual activation of complex II, in addition of complex I, dramatically enhanced ROS production at all temperatures without modifying respiration, likely because of ubiquinone over-reduction. Finally, CRC values were linearly increased by cooling in both BM and HM. In BM, the Ca2+ uptake rate by the mitochondrial calcium uniporter (MCU) decreased by 2.7-fold between 25 and 37 °C, but decreased by 5.7-fold between 25 and 37 °C in HM. In conclusion, mild cold (25-37 °C) exerts differential inhibitory effects by preventing ROS production, by reverse electron transfer (RET) in BM, and by reducing MCU-mediated Ca2+ uptake rate in BM and HM.


Assuntos
Encéfalo , Mitocôndrias Cardíacas , Animais , Homeostase , Camundongos , Espécies Reativas de Oxigênio , Respiração
13.
J Nucl Cardiol ; 29(3): 1064-1074, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33145738

RESUMO

BACKGROUND: Previous studies have suggested the role of microcalcifications in plaque vulnerability. This exploratory study sought to assess the potential of hybrid positron-emission tomography (PET)/magnetic resonance imaging (MRI) using 18F-sodium fluoride (18F-NaF) to check simultaneously 18F-NaF uptake, a marker of microcalcifications, and morphological criteria of vulnerability. METHODS AND RESULTS: We included 12 patients with either recently symptomatic or asymptomatic carotid stenosis. All patients underwent 18F-NaF PET/MRI. 18F-NaF target-to-background ratio (TBR) was measured in culprit and nonculprit (including contralateral plaques of symptomatic patients) plaques as well as in other arterial walls. Morphological criteria of vulnerability were assessed on MRI. Mineral metabolism markers were also collected. 18F-NaF uptake was higher in culprit compared to nonculprit plaques (median TBR 2.6 [2.2-2.8] vs 1.7 [1.3-2.2]; P = 0.03) but was not associated with morphological criteria of vulnerability on MRI. We found a positive correlation between 18F-NaF uptake and calcium plaque volume and ratio but not with circulating tissue-nonspecific alkaline phosphatase (TNAP) activity and inorganic pyrophosphate (PPi) levels. 18F-NaF uptake in the other arterial walls did not differ between symptomatic and asymptomatic patients. CONCLUSIONS: 18F-NaF PET/MRI may be a promising tool for providing additional insights into the plaque vulnerability.


Assuntos
Calcinose , Estenose das Carótidas , Placa Aterosclerótica , Calcinose/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Fluoreto de Sódio
14.
J Neurointerv Surg ; 14(3): 248-251, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33883212

RESUMO

BACKGROUND: First-pass effect (FPE) defined as a complete or near-complete reperfusion achieved after a single thrombectomy pass is predictive of favorable outcome in acute ischemic stroke (AIS) patients. We aimed to assess whether admission levels of inflammatory markers are associated with FPE. METHODS: HIBISCUS-STROKE (CoHort of Patients to Identify Biological and Imaging markerS of CardiovascUlar Outcomes in Stroke) includes AIS patients with large vessel occlusion treated with mechanical thrombectomy following brain MRI. C-reactive protein, interleukin (IL)-6, IL-8, IL-10, monocyte chemoattractant protein-1, soluble tumor necrosis factor receptor I, soluble form suppression of tumorigenicity 2, matrix metalloproteinase-9 (MMP-9), soluble P-selectin, and vascular cellular adhesion molecule-1 were measured in admission sera using an ELISA assay. FPE was defined as a complete or near-complete reperfusion (thrombolysis in cerebral infarction scale (TICI) 2c or 3) after the first pass. A multivariate logistic regression analysis was performed to assess independent factors associated with FPE. RESULTS: A total of 151 patients were included. Among them, 43 (28.5%) patients had FPE. FPE was associated with low admission levels of IL-6, MMP-9, and platelet count, an older age, lack of hypertension, lack of tandem occlusion, a shorter thrombus length, and a reduced procedural time. Following multivariate analysis, a low admission level of IL-6 was associated with FPE (OR 0.66, 95% CI 0.46 to 0.94). Optimal cut-off of IL-6 level for distinguishing FPE from non-FPE was 3.0 pg/mL (sensitivity 92.3%, specificity 42.3%). CONCLUSION: A lower admission level of IL-6 is associated with FPE.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Isquemia Encefálica/diagnóstico por imagem , Humanos , Interleucina-6 , Estudos Retrospectivos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Trombectomia/métodos , Resultado do Tratamento
15.
Food Chem ; 373(Pt B): 131690, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34865931

RESUMO

Mitochondria are real sensors of the physiological status of tissues. After the death of an animal, they maintain physiological activity for several days. This activity is highly dependent on the availability of nutrients in the tissue. In this study, flow cytometry was used to measure the membrane potential of mitochondria isolated from European seabass (Dicentrarchus labrax) red muscle stored in ice for seven days in order to characterize fish freshness. Two probes, TMRM and Rhodamine 123, were used to measure mitochondrial potential. During the first few days (D0 to D3), isolated mitochondria maintained high potential, and then lost their potential (from D3 to D5), but were always re-polarizable after addition of substrates (glutamate, malate and succinate). From D7, the mitochondria were more strongly depolarized and were difficult to repolarize by the substrates. Using flow cytometry, we demonstrated that mitochondria were an excellent marker to confirm seabass freshness.


Assuntos
Bass , Animais , Citometria de Fluxo , Mitocôndrias , Mitocôndrias Musculares , Alimentos Marinhos/análise
16.
J Neurol ; 269(5): 2641-2648, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34694426

RESUMO

BACKGROUND: Soluble form suppression of tumorigenicity 2 (sST2) is known to have prognostic value in ST-elevation myocardial infarction (STEMI) and could impact mortality after acute ischemic stroke (AIS). However, before considering sST2 as a therapeutic target, the kinetics of release and its association with adverse clinical events in both STEMI and AIS patients have to be determined. METHODS: We prospectively enrolled 251 STEMI patients, treated with primary percutaneous coronary intervention, and 152 AIS patients treated with mechanical thrombectomy. We evaluated the level of sST2 in patient sera at five time point (admission, 4, 24, 48 h and 1 month from admission for STEMI patients and admission, 6, 24, 48 h and 3 months from admission for AIS patients). Major adverse clinical events (MACE) (all-cause death, acute myocardial infarction, stroke or hospitalization for heart failure) in STEMI patients and all-cause death in AIS patients were recorded during a 12-month follow-up. RESULTS: Mean age of the study population was 59 ± 12 and 69 ± 15 years in STEMI and AIS patients, respectively. In STEMI patients, sST2 peaked 24 h after admission (25.5 ng/mL interquartile range (IQR) [14.9-29.1]) whereas an earlier and lower peak was observed in AIS patients (16.8 ng/mL IQR [15.2-18.3] at 6 h). Twenty-five (10.0%) STEMI patients experienced a MACE and 12 (7.9%) AIS patients had all-cause death within the first 12 months. A high level of sST2 at 24 h was associated with MACE in STEMI patients (hazard ratio (HR) = 2.5; 95% confidence interval (CI) [1.1-5.6], p = 0.03) and all-cause death in AIS patients (HR = 11.7; 95% CI [3.8-36.2], p < 0.01) within the first 12 months. CONCLUSIONS: The study highlights that sST2 levels at 24 h are associated with an increased risk to adverse clinical events in both diseases.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , AVC Isquêmico , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Prognóstico , Reperfusão , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia
17.
Front Pharmacol ; 12: 656928, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539391

RESUMO

Background: As inflammation following ST-segment elevation myocardial infarction (STEMI) is both beneficial and deleterious, there is a need to find new biomarkers of STEMI severity. Objective: We hypothesized that the circulating concentration of the soluble tumor necrosis factor α receptors 1 and 2 (sTNFR1 and sTNFR2) might predict clinical outcomes in STEMI patients. Methods: We enrolled into a prospective cohort 251 consecutive STEMI patients referred to our hospital for percutaneous coronary intervention revascularization. Blood samples were collected at five time points: admission and 4, 24, 48 h, and 1 month after admission to assess sTNFR1 and sTNFR2 serum concentrations. Patients underwent cardiac magnetic resonance imaging at 1 month. Results: sTNFR1 concentration increased at 24 h with a median of 580.5 pg/ml [95% confidence interval (CI): 534.4-645.6]. sTNFR2 increased at 48 h with a median of 2,244.0 pg/ml [95% CI: 2090.0-2,399.0]. Both sTNFR1 and sTNFR2 peak levels were correlated with infarct size and left ventricular end-diastolic volume and inversely correlated with left ventricular ejection fraction. Patients with sTNFR1 or sTNFR2 concentration above the median value were more likely to experience an adverse clinical event within 24 months after STEMI [hazards ratio (HR): 8.8, 95% CI: 4.2-18.6, p < 0.0001 for sTNFR1; HR: 6.1, 95% CI: 2.5 -10.5, p = 0.0003 for sTNFR2]. Soluble TNFR1 was an independent predictor of major adverse cardiovascular events and was more powerful than troponin I (p = 0.04 as compared to the troponin AUC). Conclusion: The circulating sTNFR1 and sTNFR2 are inflammatory markers of morphological and functional injury after STEMI. sTNFR1 appears as an early independent predictor of clinical outcomes in STEMI patients.

18.
Front Cardiovasc Med ; 8: 687501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336951

RESUMO

Ischemic heart disease remains one of the leading causes of death worldwide. Despite intensive research on the treatment of acute myocardial infarction, no effective therapy has shown clinical success. Therefore, novel therapeutic strategies are required to protect the heart from reperfusion injury. Interestingly, despite physical inactivity during hibernation, brown bears (Ursus arctos) cope with cardiovascular physiological conditions that would be detrimental to humans. We hypothesized that bear serum might contain circulating factors that could provide protection against cell injury. In this study, we sought to determine whether addition of bear serum might improve cardiomyocyte survival following hypoxia-reoxygenation. Isolated mouse cardiomyocytes underwent 45 min of hypoxia followed by reoxygenation. At the onset of reoxygenation, cells received fetal bovine serum (FBS; positive control), summer (SBS) or winter bear serum (WBS), or adult serums of other species, as indicated. After 2 h of reoxygenation, propidium iodide staining was used to evaluate cell viability by flow cytometry. Whereas, 0.5% SBS tended to decrease reperfusion injury, 0.5% WBS significantly reduced cell death, averaging 74.04 ± 7.06% vs. 79.20 ± 6.53% in the FBS group. This cardioprotective effect was lost at 0.1%, became toxic above 5%, and was specific to the bear. Our results showed that bear serum exerts a therapeutic effect with an efficacy threshold, an optimal dose, and a toxic effect on cardiomyocyte viability after hypoxia-reoxygenation. Therefore, the bear serum may be a potential source for identifying new therapeutic molecules to fight against myocardial reperfusion injury and cell death in general.

19.
Brain Commun ; 3(2): fcab064, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937770

RESUMO

Atherosclerosis is a chronic systemic inflammatory disease, inducing cardiovascular and cerebrovascular acute events. A role of neuroinflammation is suspected, but not yet investigated in the gyrencephalic brain and the related activity at blood-brain interfaces is unknown. A non-human primate model of advanced atherosclerosis was first established using longitudinal blood samples, multimodal imaging and gene analysis in aged animals. Non-human primate carotid lesions were compared with human carotid endarterectomy samples. During the whole-body imaging session, imaging of neuroinflammation and choroid plexus function was performed. Advanced plaques were present in multiple sites, premature deaths occurred and downstream lesions (myocardial fibrosis, lacunar stroke) were present in this model. Vascular lesions were similar to in humans: high plaque activity on PET and MRI imaging and systemic inflammation (high plasma C-reactive protein levels: 42 ± 14 µg/ml). We also found the same gene association (metabolic, inflammatory and anti-inflammatory markers) as in patients with similar histological features. Metabolic imaging localized abnormal brain glucose metabolism in the frontal cortex. It corresponded to cortical neuro-inflammation (PET imaging) that correlated with C-reactive protein level. Multimodal imaging also revealed pronounced choroid plexus function impairment in aging atherosclerotic non-human primates. In conclusion, multimodal whole-body inflammation exploration at the vascular level and blood-brain interfaces identified high-risk aging atherosclerosis. These results open the way for systemic and central inflammation targeting in atherosclerosis in the new era of immunotherapy.

20.
Front Cardiovasc Med ; 8: 660698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842565

RESUMO

In front of the failure to translate from bench to bedside cardioprotective drugs against myocardial ischemia-reperfusion, research scientists are currently revising their animal models. Owing to its growing incidence nowadays, type 2 diabetes (T2D) represents one of the main risk factors of co-morbidities in myocardial infarction. However, discrepancies exist between reported animal and human studies. Our aim was here to compare the impact of diabetes on cell death after cardiac ischemia-reperfusion in a human cohort of ST-elevation myocardial infarction (STEMI) patients with a diet-induced mouse model of T2D, using a high-fat high-sucrose diet for 16 weeks (HFHSD). Interestingly, a small fraction (<14%) of patients undergoing a myocardial infarct were diabetic, but treated, and did not show a bigger infarct size when compared to non-diabetic patients. On the contrary, HFHSD mice displayed an increased infarct size after an in vivo cardiac ischemia-reperfusion, together with an increased cell death after an in vitro hypoxia-reoxygenation on isolated cardiomyocytes. To mimic the diabetic patients' medication profile, 6 weeks of oral gavage with Metformin was performed in the HFHSD mouse group. Metformin treatment of the HFHSD mice led to a similar extent of lower cell death after hypoxia-reoxygenation as in the standard diet group, compared to the HFHSD cardiomyocytes. Altogether, our data highlight that due to their potential protective effect, anti-diabetic medications should be included in pre-clinical study of cardioprotective approaches. Moreover, since diabetic patients represent only a minor fraction of the STEMI patients, diabetic animal models may not be the most suitable translatable model to humans, unlike aging that appears as a common feature of all infarcted patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA