Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dis Model Mech ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804708

RESUMO

The TATA-box binding protein-associated factor 1 (TAF1) is a ubiquitously expressed protein and the largest subunit of basal transcription factor TFIID, which plays a key role in initiation of RNA polymerase II-dependent transcription. TAF1 missense variants in males cause X-linked intellectual disability, a neurodevelopmental disorder, and TAF1 is dysregulated in X-linked Dystonia-Parkinsonism, a neurodegenerative disorder. However, this field has suffered from the lack of a genetic mouse model of TAF1 disease to explore mammalian mechanism and treatments. Here, we generated and validated a conditional cre-lox allele, and the first ubiquitous Taf1 knock-out mouse. We discovered that Taf1 deletion in males was embryonically lethal, which may explain why no human null-variants have been identified. In the brains of Taf1 heterozygous females, no differences were found in gross structure, overall expression, and protein localization, suggesting extreme skewed X-inactivation towards the non-mutant chromosome. Nevertheless, these female mice exhibited a significant increase in weight, weight with age, and reduced movement, suggesting a small subset of neurons has been negatively impacted by Taf1 loss. Finally, this new mouse may be a future platform for the development of TAF1 disease therapeutics.

2.
J Cachexia Sarcopenia Muscle ; 14(1): 198-213, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36398408

RESUMO

BACKGROUND: Chronic mTORC1 activation in skeletal muscle is linked with age-associated loss of muscle mass and strength, known as sarcopenia. Genetic activation of mTORC1 by conditionally ablating mTORC1 upstream inhibitor TSC1 in skeletal muscle accelerates sarcopenia development in adult mice. Conversely, genetic suppression of mTORC1 downstream effectors of protein synthesis delays sarcopenia in natural aging mice. mTORC1 promotes protein synthesis by activating ribosomal protein S6 kinases (S6Ks) and inhibiting eIF4E-binding proteins (4EBPs). Whole-body knockout of S6K1 or muscle-specific over-expression of a 4EBP1 mutant transgene (4EBP1mt), which is resistant to mTORC1-mediated inhibition, ameliorates muscle loss with age and preserves muscle function by enhancing mitochondria activities, despite both transgenic mice showing retarded muscle growth at a young age. Why repression of mTORC1-mediated protein synthesis can mitigate progressive muscle atrophy and dysfunction with age remains unclear. METHODS: Mice with myofiber-specific knockout of TSC1 (TSC1mKO), in which mTORC1 is hyperactivated in fully differentiated myofibers, were used as a mouse model of sarcopenia. To elucidate the role of mTORC1-mediated protein synthesis in regulating muscle mass and physiology, we bred the 4EBP1mt transgene or S6k1 floxed mice into the TSC1mKO mouse background to generate 4EBP1mt-TSC1mKO or S6K1-TSC1mKO mice, respectively. Functional and molecular analyses were performed to assess their role in sarcopenia development. RESULTS: Here, we show that 4EBP1mt-TSC1mKO, but not S6K1-TSC1mKO, preserved muscle mass (36.7% increase compared with TSC1mKO, P < 0.001) and strength (36.8% increase compared with TSC1mKO, P < 0.01) at the level of control mice. Mechanistically, 4EBP1 activation suppressed aberrant protein synthesis (two-fold reduction compared with TSC1mKO, P < 0.05) and restored autophagy flux without relieving mTORC1-mediated inhibition of ULK1, an upstream activator of autophagosome initiation. We discovered a previously unidentified phenotype of lysosomal failure in TSC1mKO mouse muscle, in which the lysosomal defect was also conserved in the naturally aged mouse muscle, whereas 4EBP1 activation enhanced lysosomal protease activities to compensate for impaired autophagy induced by mTORC1 hyperactivity. Consequently, 4EBP1 activation relieved oxidative stress to prevent toxic aggregate accumulation (0.5-fold reduction compared with TSC1mKO, P < 0.05) in muscle and restored mitochondrial homeostasis and function. CONCLUSIONS: We identify 4EBP1 as a communication hub coordinating protein synthesis and degradation to protect proteostasis, revealing therapeutic potential for activating lysosomal degradation to mitigate sarcopenia.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina , Sarcopenia , Animais , Camundongos , Modelos Animais de Doenças , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Sarcopenia/genética , Sarcopenia/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
Nat Commun ; 13(1): 7792, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36526657

RESUMO

Dysregulation of mTOR complex 1 (mTORC1) activity drives neuromuscular junction (NMJ) structural instability during aging; however, downstream targets mediating this effect have not been elucidated. Here, we investigate the roles of two mTORC1 phosphorylation targets for mRNA translation, ribosome protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), in regulating NMJ structural instability induced by aging and sustained mTORC1 activation. While myofiber-specific deletion of S6k1 has no effect on NMJ structural integrity, 4EBP1 activation in murine muscle induces drastic morphological remodeling of the NMJ with enhancement of synaptic transmission. Mechanistically, structural modification of the NMJ is attributed to increased satellite cell activation and enhanced post-synaptic acetylcholine receptor (AChR) turnover upon 4EBP1 activation. Considering that loss of post-synaptic myonuclei and reduced NMJ turnover are features of aging, targeting 4EBP1 activation could induce NMJ renewal by expanding the pool of post-synaptic myonuclei as an alternative intervention to mitigate sarcopenia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Junção Neuromuscular , Transmissão Sináptica , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculos/metabolismo , Junção Neuromuscular/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA