Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949317

RESUMO

Despite important advancements in the diagnosis and treatment of cardiovascular diseases (CVDs), the field is in urgent need of increased research and scientific advancement. As a result, innovation, improvement and/or repurposing of the available research toolset can provide improved testbeds for research advancement. Langendorff perfusion is an extremely valuable research technique for the field of CVD research that can be modified to accommodate a wide array of experimental needs. This tailoring can be achieved by personalizing a large number of perfusion parameters, including perfusion pressure, flow, perfusate, temperature, etc. This protocol demonstrates the versatility of Langendorff perfusion and the feasibility of achieving longer perfusion times (4 h) without graft function loss by utilizing lower perfusion pressures (30-35 mmHg). Achieving extended perfusion times without graft damage and/or function loss caused by the technique itself has the potential to eliminate confounding elements from experimental results. In effect, in scientific circumstances where longer perfusion times are relevant to the experimental needs (i.e., drug treatments, immunological response analysis, gene editing, graft preservation, etc.), lower perfusion pressures can be key for scientific success.


Assuntos
Perfusão , Animais , Perfusão/métodos , Ratos , Transplante de Coração/métodos , Preparação de Coração Isolado/métodos
2.
FASEB J ; 37(10): e23187, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37718489

RESUMO

Despite decades of effort, the preservation of complex organs for transplantation remains a significant barrier that exacerbates the organ shortage crisis. Progress in organ preservation research is significantly hindered by suboptimal research tools that force investigators to sacrifice translatability over throughput. For instance, simple model systems, such as single cell monolayers or co-cultures, lack native tissue structure and functional assessment, while mammalian whole organs are complex systems with confounding variables not compatible with high-throughput experimentation. In response, diverse fields and industries have bridged this experimental gap through the development of rich and robust resources for the use of zebrafish as a model organism. Through this study, we aim to demonstrate the value zebrafish pose for the fields of solid organ preservation and transplantation, especially with respect to experimental transplantation efforts. A wide array of methods were customized and validated for preservation-specific experimentation utilizing zebrafish, including the development of assays at multiple developmental stages (larvae and adult), methods for loading and unloading preservation agents, and the development of viability scores to quantify functional outcomes. Using this platform, the largest and most comprehensive screen of cryoprotectant agents (CPAs) was performed to determine their toxicity and efficiency at preserving complex organ systems using a high subzero approach called partial freezing (i.e., storage in the frozen state at -10°C). As a result, adult zebrafish cardiac function was successfully preserved after 5 days of partial freezing storage. In combination, the methods and techniques developed have the potential to drive and accelerate research in the fields of solid organ preservation and transplantation.


Assuntos
Preservação de Órgãos , Peixe-Zebra , Animais , Bioensaio , Técnicas de Cocultura , Larva , Mamíferos
3.
Nat Commun ; 13(1): 4008, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840553

RESUMO

The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.


Assuntos
Crioprotetores , Gelo , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Congelamento , Fígado , Perfusão/métodos , Ratos
4.
Front Phys ; 102022.
Artigo em Inglês | MEDLINE | ID: mdl-37151819

RESUMO

Introduction: The current liver organ shortage has pushed the field of transplantation to develop new methods to prolong the preservation time of livers from the current clinical standard of static cold storage. Our approach, termed partial freezing, aims to induce a thermodynamically stable frozen state at high subzero storage temperatures (-10°C to -15°C), while simultaneously maintaining a sufficient unfrozen fraction to limit ice-mediated injury. Methods and results: Using glycerol as the main permeating cryoprotectant agent, this research first demonstrated that partially frozen rat livers showed similar outcomes after thawing from either -10°C or -15°C with respect to subnormothermic machine perfusion metrics. Next, we assessed the effect of adding ice modulators, including antifreeze glycoprotein (AFGP) or a polyvinyl alcohol/polyglycerol combination (X/Z-1000), on the viability and structural integrity of partially frozen rat livers compared to glycerol-only control livers. Results showed that AFGP livers had high levels of ATP and the least edema but suffered from significant endothelial cell damage. X/Z-1000 livers had the highest levels of ATP and energy charge (EC) but also demonstrated endothelial damage and post-thaw edema. Glycerol-only control livers exhibited the least DNA damage on Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining but also had the lowest levels of ATP and EC. Discussion: Further research is necessary to optimize the ideal ice modulator cocktail for our partial-freezing protocol. Modifications to cryoprotective agent (CPA) combinations, including testing additional ice modulators, can help improve the viability of these partially frozen organs.

5.
PLoS One ; 16(10): e0258833, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705828

RESUMO

Ischemia reperfusion injury (IRI) is a critical problem in liver transplantation that can lead to life-threatening complications and substantially limit the utilization of livers for transplantation. However, because there are no early diagnostics available, fulminant injury may only become evident post-transplant. Mitochondria play a central role in IRI and are an ideal diagnostic target. During ischemia, changes in the mitochondrial redox state form the first link in the chain of events that lead to IRI. In this study we used resonance Raman spectroscopy to provide a rapid, non-invasive, and label-free diagnostic for quantification of the hepatic mitochondrial redox status. We show this diagnostic can be used to significantly distinguish transplantable versus non-transplantable ischemically injured rat livers during oxygenated machine perfusion and demonstrate spatial differences in the response of mitochondrial redox to ischemia reperfusion. This novel diagnostic may be used in the future to predict the viability of human livers for transplantation and as a tool to better understand the mechanisms of hepatic IRI.


Assuntos
Fígado/lesões , Mitocôndrias Hepáticas/metabolismo , Perfusão/efeitos adversos , Traumatismo por Reperfusão/diagnóstico , Animais , Ciências Biocomportamentais , Diagnóstico Precoce , Humanos , Fígado/metabolismo , Oxirredução , Perfusão/instrumentação , Ratos , Traumatismo por Reperfusão/metabolismo , Análise Espectral Raman
6.
Nat Protoc ; 15(6): 2024-2040, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32433625

RESUMO

Preservation of human organs at subzero temperatures has been an elusive goal for decades. The major complication hindering successful subzero preservation is the formation of ice at temperatures below freezing. Supercooling, or subzero non-freezing, preservation completely avoids ice formation at subzero temperatures. We previously showed that rat livers can be viably preserved three times longer by supercooling as compared to hypothermic preservation at +4 °C. Scalability of supercooling preservation to human organs was intrinsically limited because of volume-dependent stochastic ice formation at subzero temperatures. However, we recently adapted the rat preservation approach so it could be applied to larger organs. Here, we describe a supercooling protocol that averts freezing of human livers by minimizing air-liquid interfaces as favorable sites of ice nucleation and uses preconditioning with cryoprotective agents to depress the freezing point of the liver tissue. Human livers are homogeneously preconditioned during multiple machine perfusion stages at different temperatures. Including preparation, the protocol takes 31 h to complete. Using this protocol, human livers can be stored free of ice at -4 °C, which substantially extends the ex vivo life of the organ. To our knowledge, this is the first detailed protocol describing how to perform subzero preservation of human organs.


Assuntos
Fígado/fisiologia , Preservação de Órgãos/métodos , Temperatura Baixa , Crioprotetores/química , Desenho de Equipamento , Congelamento , Humanos , Gelo/análise , Fígado/química , Preservação de Órgãos/instrumentação , Perfusão/instrumentação , Perfusão/métodos
7.
Sci Rep ; 10(1): 1102, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980677

RESUMO

The global shortage of donor organs has made it crucial to deeply understand and better predict donor liver viability. However, biomarkers that effectively assess viability of marginal grafts for organ transplantation are currently lacking. Here, we showed that hepatocytes, sinusoidal endothelial, stellate, and liver-specific immune cells were released into perfusates from Lewis rat livers as a result of cold ischemia and machine perfusion. Perfusate comparison analysis of fresh livers and cold ischemic livers showed that the released cell profiles were significantly altered by the duration of cold ischemia. Our findings show for the first time that parenchymal cells are released from organs under non-proliferative pathological conditions, correlating with the degree of ischemic injury. Thus, perfusate cell profiles could serve as potential biomarkers of graft viability and indicators of specific injury mechanisms during organ handling and transplantation. Further, parenchymal cell release may have applications in other pathological conditions beyond organ transplantation.


Assuntos
Temperatura Baixa/efeitos adversos , Hipotermia Induzida/efeitos adversos , Isquemia/etiologia , Isquemia/patologia , Fígado/irrigação sanguínea , Fígado/patologia , Perfusão/efeitos adversos , Animais , Separação Celular/métodos , Células Estreladas do Fígado/patologia , Hepatócitos/patologia , Fígado/citologia , Transplante de Fígado , Ratos
8.
Technology (Singap World Sci) ; 8(1-2): 27-36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34307768

RESUMO

Ex-vivo liver perfusion (EVLP) is an ideal platform to study liver disease, therapeutic interventions, and pharmacokinetic properties of drugs without any patient risk. Rat livers are an ideal model for EVLP due to less organ quality variability, ease of hepatectomy, well-defined molecular pathways, and relatively low costs compared to large animal or human perfusions. However, the major limitation with rat liver normothermic machine perfusion (NMP) is maintaining physiologic liver function on an ex-vivo machine perfusion system. To address this need, our research demonstrates 24-hour EVLP in rats under normothermic conditions. Early (6 hour) perfusate transaminase levels and oxygen consumption of the liver graft are shown to be good markers of perfusion success and correlate with viable 24-hour post-perfusion histology. Finally, we address overcoming challenges in long-term rat liver perfusions such as rising intrahepatic pressures and contamination, and offer future directions necessary to build upon our work.

9.
Nat Biotechnol ; 37(10): 1131-1136, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501557

RESUMO

The inability to preserve vascular organs beyond several hours contributes to the scarcity of organs for transplantation1,2. Standard hypothermic preservation at +4 °C (refs. 1,3) limits liver preservation to less than 12 h. Our group previously showed that supercooled ice-free storage at -6 °C can extend viable preservation of rat livers4,5 However, scaling supercooling preservation to human organs is intrinsically limited because of volume-dependent stochastic ice formation. Here, we describe an improved supercooling protocol that averts freezing of human livers by minimizing favorable sites of ice nucleation and homogeneous preconditioning with protective agents during machine perfusion. We show that human livers can be stored at -4 °C with supercooling followed by subnormothermic machine perfusion, effectively extending the ex vivo life of the organ by 27 h. We show that viability of livers before and after supercooling is unchanged, and that after supercooling livers can withstand the stress of simulated transplantation by ex vivo normothermic reperfusion with blood.


Assuntos
Temperatura Baixa , Fígado/fisiologia , Preservação de Órgãos/métodos , Humanos , Soluções para Preservação de Órgãos , Perfusão , Sobrevivência de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA