Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 29: 286-302, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37359415

RESUMO

Mucopolysaccharidosis II (MPS II) is a rare lysosomal storage disease characterized by deficient activity of iduronate-2-sulfatase (I2S), leading to pathological accumulation of glycosaminoglycans (GAGs) in tissues. We used iduronate-2-sulfatase knockout (Ids KO) mice to investigate if liver-directed recombinant adeno-associated virus vectors (rAAV8-LSP-hIDSco) encoding human I2S (hI2S) could cross-correct I2S deficiency in Ids KO mouse tissues, and we then assessed the translation of mouse data to non-human primates (NHPs). Treated mice showed sustained hepatic hI2S production, accompanied by normalized GAG levels in somatic tissues (including critical tissues such as heart and lung), indicating systemic cross-correction from liver-secreted hI2S. Brain GAG levels in Ids KO mice were lowered but not normalized; higher doses were required to see improvements in brain histology and neurobehavioral testing. rAAV8-LSP-hIDSco administration in NHPs resulted in sustained hepatic hI2S production and therapeutic hI2S levels in cross-corrected somatic tissues but no hI2S exposure in the central nervous system, perhaps owing to lower levels of liver transduction in NHPs than in mice. Overall, we demonstrate the ability of rAAV8-LSP-hIDSco to cross-correct I2S deficiency in mouse somatic tissues and highlight the importance of showing translatability of gene therapy data from rodents to NHPs, which is critical for supporting translation to clinical development.

2.
Skelet Muscle ; 8(1): 34, 2018 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368252

RESUMO

BACKGROUND: Myostatin antagonists are being developed as therapies for Duchenne muscular dystrophy due to their strong hypertrophic effects on skeletal muscle. Engineered follistatin has the potential to combine the hypertrophy of myostatin antagonism with the anti-inflammatory and anti-fibrotic effects of activin A antagonism. METHODS: Engineered follistatin was administered to C57BL/6 mice for 4 weeks, and muscle mass and myofiber size was measured. In the mdx model, engineered follistatin was dosed for 12 weeks in two studies comparing to an Fc fusion of the activin IIB receptor or an anti-myostatin antibody. Functional measurements of grip strength and tetanic force were combined with tissue analysis for markers of necrosis, inflammation, and fibrosis to evaluate improvement in dystrophic pathology. RESULTS: In wild-type and mdx mice, dose-dependent increases in muscle mass and quadriceps myofiber size were observed for engineered follistatin. In mdx, increases in grip strength and tetanic force were combined with improvements in muscle markers for necrosis, inflammation, and fibrosis. Improvements in dystrophic pathology were greater for engineered follistatin than the anti-myostatin antibody. CONCLUSIONS: Engineered follistatin generated hypertrophy and anti-fibrotic effects in the mdx model.


Assuntos
Ativinas/antagonistas & inibidores , Folistatina/uso terapêutico , Distrofias Musculares/tratamento farmacológico , Miostatina/antagonistas & inibidores , Animais , Folistatina/administração & dosagem , Força da Mão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/uso terapêutico
3.
J Pharmacol Exp Ther ; 366(2): 291-302, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29752426

RESUMO

Follistatin (FS) is an important regulatory protein, a natural antagonist for transforming growth factor-ß family members activin and myostatin. The diverse biologic roles of the activin and myostatin signaling pathways make FS a promising therapeutic target for treating human diseases exhibiting inflammation, fibrosis, and muscle disorders, such as Duchenne muscular dystrophy. However, rapid heparin-mediated hepatic clearance of FS limits its therapeutic potential. We targeted the heparin-binding loop of FS for site-directed mutagenesis to improve clearance parameters. By generating a series of FS variants with one, two, or three negative amino acid substitutions, we demonstrated a direct and proportional relationship between the degree of heparin-binding affinity in vitro and the exposure in vivo. The triple mutation K(76,81,82)E abolished heparin-binding affinity, resulting in ∼20-fold improved in vivo exposure. This triple mutant retains full functional activity and an antibody-like pharmacokinetic profile, and shows a superior developability profile in physical stability and cell productivity compared with FS variants, which substitute the entire heparin-binding loop with alternative sequences. Our surgical approach to mutagenesis should also reduce the immunogenicity risk. To further lower this risk, we introduced a novel glycosylation site into the heparin-binding loop. This hyperglycosylated variant showed a 10-fold improved exposure and decreased clearance in mice compared with an IgG1 Fc fusion protein containing the native FS sequence. Collectively, our data highlight the importance of improving pharmacokinetic properties by manipulating heparin-binding affinity and glycosylation content and provide a valuable guideline to design desirable therapeutic FS molecules.


Assuntos
Folistatina/genética , Folistatina/farmacocinética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Feminino , Folistatina/metabolismo , Folistatina/uso terapêutico , Glicosilação , Heparina/metabolismo , Humanos , Camundongos , Mutação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA