Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Nat Chem ; 16(1): 89-97, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37710047

RESUMO

Recent advances in de novo protein design have delivered a diversity of discrete de novo protein structures and complexes. A new challenge for the field is to use these designs directly in cells to intervene in biological processes and augment natural systems. The bottom-up design of self-assembled objects such as microcompartments and membraneless organelles is one such challenge. Here we describe the design of genetically encoded polypeptides that form membraneless organelles in Escherichia coli. To do this, we combine de novo α-helical sequences, intrinsically disordered linkers and client proteins in single-polypeptide constructs. We tailor the properties of the helical regions to shift protein assembly from arrested assemblies to dynamic condensates. The designs are characterized in cells and in vitro using biophysical methods and soft-matter physics. Finally, we use the designed polypeptide to co-compartmentalize a functional enzyme pair in E. coli, improving product formation close to the theoretical limit.


Assuntos
Condensados Biomoleculares , Escherichia coli , Humanos , Proteínas/análise , Peptídeos/química , Conformação Proteica em alfa-Hélice , Organelas/química
2.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947636

RESUMO

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to a persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3, and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct, with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.


Assuntos
Neoplasias , Linfócitos T , Camundongos , Animais , Antígeno CTLA-4/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias/metabolismo , Imunoterapia
3.
R Soc Open Sci ; 10(10): 230755, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37885989

RESUMO

Among butterflies, Heliconius have a unique behavioural profile, being the sole genus to actively feed on pollen. Heliconius learn the location of pollen resources, and have enhanced visual memories and expanded mushroom bodies, an insect learning and memory centre, relative to related genera. These structures also show extensive post-eclosion growth and developmental sensitivity to environmental conditions. However, whether this reflects plasticity in neurite growth, or an extension of neurogenesis into the adult stage, is unknown. Adult neurogenesis has been described in some Lepidoptera, and could provide one route to the increased neuron number observed in Heliconius. Here, we compare volumetric changes in the mushroom bodies of freshly eclosed and aged Heliconius erato and Dryas iulia, and estimate the number of intrinsic mushroom body neurons using a new and validated automated method to count nuclei. Despite extensive volumetric variation associated with age, our data show that neuron number is remarkably constant in both species, suggesting a lack of adult neurogenesis in the mushroom bodies. We support this conclusion with assays of mitotic cells, which reveal very low levels of post-eclosion cell division. Our analyses provide an insight into the evolution of neural plasticity, and can serve as a basis for continued exploration of the potential mechanisms behind brain development and maturation.

4.
Immunol Cell Biol ; 101(10): 947-963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37694300

RESUMO

Macrophages have previously been characterized based on phenotypical and functional differences into suggested simplified subtypes of MØ, M1, M2a and M2c. These macrophage subtypes can be generated in a well-established primary monocyte culture model that produces cells expressing accepted subtype surface markers. To determine how these subtypes retain functional similarities and better understand their formation, we generated all four subtypes from the same donors. Comparative whole-cell proteomics confirmed that four distinct macrophage subtypes could be induced from the same donor material, with > 50% of 5435 identified proteins being significantly altered in abundance between subtypes. Functional assessment highlighted that these distinct protein expression profiles are primed to enable specific cell functions, indicating that this shifting proteome is predictive of meaningful changes in cell characteristics. Importantly, the 2552 proteins remained consistent in abundance across all macrophage subtypes examined, demonstrating maintenance of a stable core proteome that likely enables swift polarity changes. We next explored the cross-polarization capabilities of preactivated M1 macrophages treated with dexamethasone. Importantly, these treated cells undergo a partial repolarization toward the M2c surface markers but still retain the M1 functional phenotype. Our investigation of polarized macrophage subtypes therefore provides evidence of a sliding scale of macrophage functionality, with these data sets providing a valuable benchmark resource for further studies of macrophage polarity, with relevance for cell therapy development and drug discovery.


Assuntos
Proteoma , Proteômica , Proteoma/metabolismo , Células Cultivadas , Macrófagos/metabolismo , Monócitos/fisiologia
5.
J Microsc ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696268

RESUMO

ModularImageAnalysis (MIA) is an ImageJ plugin providing a code-free graphical environment in which complex automated analysis workflows can be constructed and distributed. The broad range of included modules cover all stages of a typical analysis workflow, from image loading through image processing, object detection, extraction of measurements, measurement-based filtering, visualisation and data exporting. MIA provides out-of-the-box compatibility with many advanced image processing plugins for ImageJ including Bio-Formats, DeepImageJ, MorphoLibJ and TrackMate, allowing these tools and their outputs to be directly incorporated into analysis workflows. By default, modules support spatially calibrated 5D images, meaning measurements can be acquired in both pixel and calibrated units. A hierarchical object relationship model allows for both parent-child (one-to-many) and partner (many-to-many) relationships to be established. These relationships underpin MIA's ability to track objects through time, represent complex spatial relationships (e.g. topological skeletons) and measure object distributions (e.g. count puncta per cell). MIA features dual graphical interfaces: the 'editing view' offers access to the full list of modules and parameters in the workflow, while the simplified 'processing view' can be configured to display only a focused subset of controls. All workflows are batch-enabled by default, with image files within a specified folder being processed automatically and exported to a single spreadsheet. Beyond the included modules, functionality can be extended both internally, through integration with the ImageJ scripting interface, and externally, by developing third-party Java modules that extend the core MIA framework. Here we describe the design and functionality of MIA in the context of a series of real-world example analyses.

6.
Front Mol Neurosci ; 16: 1205516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37435575

RESUMO

Regulated secretion is conserved in all eukaryotes. In vertebrates granin family proteins function in all key steps of regulated secretion. Phase separation and amyloid-based storage of proteins and small molecules in secretory granules require ion homeostasis to maintain their steady states, and thus need ion conductances in granule membranes. But granular ion channels are still elusive. Here we show that granule exocytosis in neuroendocrine cells delivers to cell surface dominant anion channels, to which chromogranin B (CHGB) is critical. Biochemical fractionation shows that native CHGB distributes nearly equally in soluble and membrane-bound forms, and both reconstitute highly selective anion channels in membrane. Confocal imaging resolves granular membrane components including proton pumps and CHGB in puncta on the cell surface after stimulated exocytosis. High pressure freezing immuno-EM reveals a major fraction of CHGB at granule membranes in rat pancreatic ß-cells. A cryo-EM structure of bCHGB dimer of a nominal 3.5 Å resolution delineates a central pore with end openings, physically sufficient for membrane-spanning and large single channel conductance. Together our data support that CHGB-containing (CHGB+) channels are characteristic of regulated secretion, and function in granule ion homeostasis near the plasma membrane or possibly in other intracellular processes.

7.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37503045

RESUMO

T cells can express multiple inhibitory receptors. Upon induction of T cell exhaustion in response to persistent antigen, prominently in the anti-tumor immune response, many are expressed simultaneously. Key inhibitory receptors are CTLA-4, PD-1, LAG3, TIM3 and TIGIT, as investigated here. These receptors are important as central therapeutic targets in cancer immunotherapy. Inhibitory receptors are not constitutively expressed on the cell surface, but substantial fractions reside in intracellular vesicular structures. It remains unresolved to which extent the subcellular localization of different inhibitory receptors is distinct. Using quantitative imaging of subcellular distributions and plasma membrane insertion as complemented by proximity proteomics and a biochemical analysis of the association of the inhibitory receptors with trafficking adaptors, the subcellular distributions of the five inhibitory receptors were discrete. The distribution of CTLA-4 was most distinct with preferential association with lysosomal-derived vesicles and the sorting nexin 1/2/5/6 transport machinery. With a lack of evidence for the existence of specific vesicle subtypes to explain divergent inhibitory receptor distributions, we suggest that such distributions are driven by divergent trafficking through an overlapping joint set of vesicular structures. This extensive characterization of the subcellular localization of five inhibitory receptors in relation to each other lays the foundation for the molecular investigation of their trafficking and its therapeutic exploitation.

8.
Neuromuscul Disord ; 33(8): 660-669, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37419717

RESUMO

Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.


Assuntos
Distrofia Miotônica , Substância Branca , Humanos , Adulto , Feminino , Masculino , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem , Distrofia Miotônica/complicações , Função Executiva , Anisotropia , Encéfalo/diagnóstico por imagem
9.
Nat Commun ; 14(1): 4026, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419900

RESUMO

Platelets, small hemostatic blood cells, are derived from megakaryocytes. Both bone marrow and lung are principal sites of thrombopoiesis although underlying mechanisms remain unclear. Outside the body, however, our ability to generate large number of functional platelets is poor. Here we show that perfusion of megakaryocytes ex vivo through the mouse lung vasculature generates substantial platelet numbers, up to 3000 per megakaryocyte. Despite their large size, megakaryocytes are able repeatedly to passage through the lung vasculature, leading to enucleation and subsequent platelet generation intravascularly. Using ex vivo lung and an in vitro microfluidic chamber we determine how oxygenation, ventilation, healthy pulmonary endothelium and the microvascular structure support thrombopoiesis. We also show a critical role for the actin regulator Tropomyosin 4 in the final steps of platelet formation in lung vasculature. This work reveals the mechanisms of thrombopoiesis in lung vasculature and informs approaches to large-scale generation of platelets.


Assuntos
Plaquetas , Microfluídica , Camundongos , Animais , Megacariócitos , Trombopoese , Pulmão
10.
Nat Commun ; 14(1): 3086, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248224

RESUMO

Retromer controls cellular homeostasis through regulating integral membrane protein sorting and transport and by controlling maturation of the endo-lysosomal network. Retromer dysfunction, which is linked to neurodegenerative disorders including Parkinson's and Alzheimer's diseases, manifests in complex cellular phenotypes, though the precise nature of this dysfunction, and its relation to neurodegeneration, remain unclear. Here, we perform an integrated multi-omics approach to provide precise insight into the impact of Retromer dysfunction on endo-lysosomal health and homeostasis within a human neuroglioma cell model. We quantify widespread changes to the lysosomal proteome, indicative of broad lysosomal dysfunction and inefficient autophagic lysosome reformation, coupled with a reconfigured cell surface proteome and secretome reflective of increased lysosomal exocytosis. Through this global proteomic approach and parallel transcriptomic analysis, we provide a holistic view of Retromer function in regulating lysosomal homeostasis and emphasise its role in neuroprotection.


Assuntos
Multiômica , Neuroproteção , Humanos , Proteoma/metabolismo , Proteômica , Endossomos/metabolismo , Transporte Proteico/fisiologia , Lisossomos/metabolismo
11.
Biol Imaging ; 3: e12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38510164

RESUMO

Microscopy is a widely used method in biological research to observe the morphology and structure of cells. Amongst the plethora of microscopy techniques, fluorescent labeling with dyes or antibodies is the most popular method for revealing specific cellular organelles. However, fluorescent labeling also introduces new challenges to cellular observation, as it increases the workload, and the process may result in nonspecific labeling. Recent advances in deep visual learning have shown that there are systematic relationships between fluorescent and bright-field images, thus facilitating image translation between the two. In this article, we propose the cross-attention conditional generative adversarial network (XAcGAN) model. It employs state-of-the-art GANs (GANs) to solve the image translation task. The model uses supervised learning and combines attention-based networks to explore spatial information during translation. In addition, we demonstrate the successful application of XAcGAN to infer the health state of translated nuclei from bright-field microscopy images. The results show that our approach achieves excellent performance both in terms of image translation and nuclei state inference.

12.
Adv Sci (Weinh) ; 9(35): e2202717, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36314048

RESUMO

Several immune cell-expressed miRNAs (miRs) are associated with altered prognostic outcome in cancer patients, suggesting that they may be potential targets for development of cancer therapies. Here, translucent zebrafish (Danio rerio) is utilized to demonstrate that genetic knockout or knockdown of one such miR, microRNA-223 (miR223), globally or specifically in leukocytes, does indeed lead to reduced cancer progression. As a first step toward potential translation to a clinical therapy, a novel strategy is described for reprogramming neutrophils and macrophages utilizing miniature artificial protocells (PCs) to deliver anti-miRs against the anti-inflammatory miR223. Using genetic and live imaging approaches, it is shown that phagocytic uptake of anti-miR223-loaded PCs by leukocytes in zebrafish (and by human macrophages in vitro) effectively prolongs their pro-inflammatory state by blocking the suppression of pro-inflammatory cytokines, which, in turn, drives altered immune cell-cancer cell interactions and ultimately leads to a reduced cancer burden by driving reduced proliferation and increased cell death of tumor cells. This PC cargo delivery strategy for reprogramming leukocytes toward beneficial phenotypes has implications also for treating other systemic or local immune-mediated pathologies.


Assuntos
Células Artificiais , Técnicas de Reprogramação Celular , Reprogramação Celular , Macrófagos , MicroRNAs , Neoplasias , Fagocitose , Animais , Humanos , MicroRNAs/genética , Neoplasias/terapia , Peixe-Zebra , Reprogramação Celular/genética
13.
Appl Environ Microbiol ; 88(13): e0069822, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35695569

RESUMO

Extracellular DNA (eDNA) is an important component of biofilm matrix that serves to maintain biofilm structural integrity, promotes genetic exchange within the biofilm, and provides protection against antimicrobial compounds. Advances in microscopy techniques have provided evidence of the cobweb- or lattice-like structures of eDNA within biofilms from a range of environmental niches. However, methods to reliably assess the abundance and architecture of eDNA remain lacking. This study aimed to address this gap by development of a novel, high-throughput image acquisition and analysis platform for assessment of eDNA networks in situ within biofilms. Utilizing Streptococcus gordonii as the model, the capacity for this imaging system to reliably detect eDNA networks and monitor changes in abundance and architecture (e.g., strand length and branch number) was verified. Evidence was provided of a synergy between glucans and eDNA matrices, while it was revealed that surface-bound nuclease SsnA could modify these eDNA structures under conditions permissive for enzymatic activity. Moreover, cross talk between the competence and hexaheptapeptide permease systems was shown to regulate eDNA release by S. gordonii. This novel imaging system can be applied across the wider field of biofilm research, with potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit. IMPORTANCE Extracellular DNA (eDNA) is critical for maintaining the structural integrity of many microbial biofilms, making it an attractive target for the management of biofilms. However, our knowledge and targeting of eDNA are currently hindered by a lack of tools for the quantitative assessment of eDNA networks within biofilms. Here, we demonstrate use of a novel image acquisition and analysis platform with the capacity to reliably monitor the abundance and architecture of eDNA networks. Application of this tool to Streptococcus gordonii biofilms has provided new insights into how eDNA networks are stabilized within the biofilm and the pathways that can regulate eDNA release. This highlights how exploitation of this novel imaging system across the wider field of biofilm research has potential to significantly advance interrogation of the mechanisms by which the eDNA network architecture develops, how it can influence biofilm properties, and how it may be targeted for therapeutic benefit.


Assuntos
Biofilmes , Streptococcus gordonii , DNA , DNA Bacteriano/genética , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Streptococcus gordonii/fisiologia
14.
Methods Mol Biol ; 2476: 75-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35635698

RESUMO

Longitudinal magnetic tweezers (L-MT) have seen wide-scale adoption as the tool of choice for stretching and twisting a single DNA molecule. They are also used to probe topological changes in DNA as a result of protein binding and enzymatic activity. However, in the longitudinal configuration, the DNA molecule is extended perpendicular to the imaging plane. As a result, it is only possible to infer biological activity from the motion of the tethered paramagnetic microsphere. Described here is a "transverse" magnetic tweezers (T-MT) geometry featuring simultaneous control of DNA extension and spatially coincident video-rate epi-fluorescence imaging. Unlike in L-MT, DNA tethers in T-MT are extended parallel to the imaging plane between two micron-sized spheres, and importantly protein targets on the DNA can be localized using fluorescent nanoparticles. The T-MT can manipulate a long DNA construct at molecular extensions approaching the contour length defined by B-DNA helical geometry, and the measured entropic elasticity agrees with the wormlike chain model (force <35 pN). By incorporating a torsionally constrained DNA tether, the T-MT would allow both the relative extension and twist of the tether to be manipulated, while viewing far-red emitting fluorophore-labeled targets. This T-MT design has the potential to enable the study of DNA binding and remodeling processes under conditions of constant force and defined torsional stress.


Assuntos
DNA , Magnetismo , DNA/química , Fenômenos Magnéticos , Magnetismo/métodos , Microscopia de Fluorescência , Nanotecnologia
15.
BMJ Open Qual ; 11(2)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35428671

RESUMO

BACKGROUND: Intracerebral haemorrhage (ICH) accounts for 10%-15% of strokes in the UK, but is responsible for half of all annual global stroke deaths. The ABC bundle for ICH was developed and implemented at Salford Royal Hospital, and was associated with a 44% reduction in 30-day case fatality. Implementation of the bundle was scaled out to the other hyperacute stroke units (HASUs) in the region from April 2017. A mixed methods evaluation was conducted alongside to investigate factors influencing implementation of the bundle across new settings, in order to provide lessons for future spread. METHODS: A harmonised quality improvement registry at each HASU captured consecutive patients with spontaneous ICH from October 2016 to March 2018 to capture process and outcome measures for preimplementation (October 2016 to March 2017) and implementation (April 2017 to March 2018) time periods. Statistical analyses were performed to determine differences in process measures and outcomes before and during implementation. Multiple qualitative methods (interviews, non-participant observation and project document analysis) captured how the bundle was implemented across the HASUs. RESULTS: HASU1 significantly reduced median anticoagulant reversal door-to-needle time from 132 min (IQR: 117-342) preimplementation to 76 min (64-113.5) after implementation and intensive blood pressure lowering door to target time from 345 min (204-866) preimplementation to 84 min (60-117) after implementation. No statistically significant improvements in process targets were observed at HASU2. No significant change was seen in 30-day mortality at either HASU. Qualitative evaluation identified the importance of facilitation during implementation and identified how contextual changes over time impacted on implementation. This identified the need for continued implementation support. CONCLUSION: The findings show how the ABC bundle can be successfully implemented into new settings and how challenges can impede implementation. Findings have been used to develop an implementation strategy to support future roll out of the bundle outside the region.


Assuntos
Pacotes de Assistência ao Paciente , Acidente Vascular Cerebral , Hemorragia Cerebral/terapia , Inglaterra , Humanos , Melhoria de Qualidade , Acidente Vascular Cerebral/terapia
16.
Methods Mol Biol ; 2419: 133-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237963

RESUMO

Bromodeoxyuridine/5-bromo-2'-deoxyuridine (BrdU) is a nucleoside analog of thymidine and its incorporation into DNA during replication within S-phase of the cell cycle is used to quantify cell proliferation. Quantification of incorporated BrdU is considered the most direct measure of cell proliferation, and here we describe BrdU incorporation into cultured vascular smooth muscle cells (VSMCs) and endothelial cells in vitro. Incorporation of fluorescent-labeled ethynyldeoxyuridine/5-ethynyl-2'-deoxyuridine (EdU) is a novel alternative to BrdU assays and presents significant advantages. This method of detection of EdU based on a simple "click" chemical reaction, which covalently bonds EdU to a fluorescent dye is also outlined in this chapter with a protocol for quantitative analysis of EdU incorporation using a Fiji-based macro. We also describe how proliferation can be assessed by quantification of classical proliferative markers such as phopsho-Ser807/811 retinoblastoma (Rb), proliferating cell nuclear antigen (PCNA) and cyclin D1 by Western blotting. As these markers are involved in different aspects of the cell cycle regulation, examining their expression levels can not only reveal the relative population of proliferating cells but can also improve our understanding of the mechanism of action of a given treatment or intervention. The scratch wound assay is a simple and cost-effective technique to quantify cell migration. A protocol which involves creating a wound in a cell cultured monolayer and measuring the distance migrated by the cells after a predefined time period is also described. Gap creation can also be achieved via physical cell exclusion where cells are seeded in distinct reservoirs of a cell culture insert which reveal a gap upon removal. Cell migration may then be quantified by monitoring the rate of gap closure. The presence of cleaved caspase-3 is a marker of programmed cell death (apoptosis). To detect cleaved caspase-3 in vitro, immunocytochemistry and fluorescence can be performed as outlined in this chapter.


Assuntos
Aterosclerose , Desoxiuridina , Apoptose , Bromodesoxiuridina/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Humanos
17.
Neuroendocrinology ; 112(11): 1058-1077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35051932

RESUMO

INTRODUCTION: Water homoeostasis is achieved by secretion of the peptide hormones arginine vasopressin (AVP) and oxytocin (OXT) that are synthesized by separate populations of magnocellular neurones (MCNs) in the supraoptic and paraventricular (PVN) nuclei of the hypothalamus. To further understand the molecular mechanisms that facilitate biosynthesis of AVP and OXT by MCNs, we have explored the spatiotemporal dynamic, both mRNA and protein expression, of two genes identified by our group as being important components of the osmotic defence response: Caprin2 and Creb3l1. METHODS: By RNA in situ hybridization and immunohistochemistry, we have characterized the expression of Caprin2 and Creb3l1 in MCNs in the basal state, in response to dehydration, and during rehydration in the rat. RESULTS: We found that Caprin2 and Creb3l1 are expressed in AVP and OXT MCNs and in response to dehydration expression increases in both MCN populations. Protein levels mirror the increase in transcript levels for both CREB3L1 and CAPRIN2. In view of increased CREB3L1 and CAPRIN2 expression in OXT neurones by dehydration, we explored OXT-specific functions for these genes. By luciferase assays, we demonstrate that CREB3L1 may be a transcription factor regulating Oxt gene expression. By RNA immunoprecipitation assays and Northern blot analysis of Oxt mRNA poly(A) tails, we have found that CAPRIN2 binds to Oxt mRNA and regulates its poly(A) tail length. Moreover, in response to dehydration, Caprin2 mRNA is subjected to nuclear retention, possibly to regulate Caprin2 mRNA availability in the cytoplasm. CONCLUSION: The exploration of the spatiotemporal dynamics of Creb3l1- and Caprin2-encoded mRNAs and proteins has provided novel insights beyond the AVP-ergic system, revealing novel OXT-ergic system roles of these genes in the osmotic defence response.


Assuntos
Arginina Vasopressina , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Ocitocina , Proteínas de Ligação a RNA , Animais , Ratos , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Desidratação/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Ocitocina/genética , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Núcleo Supraóptico/metabolismo , Água/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteínas de Ligação a RNA/genética
18.
Commun Biol ; 5(1): 9, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013519

RESUMO

Tumors generate an immune-suppressive environment that prevents effective killing of tumor cells by CD8+ cytotoxic T cells (CTL). It remains largely unclear upon which cell type and at which stage of the anti-tumor response mediators of suppression act. We have combined an in vivo tumor model with a matching in vitro reconstruction of the tumor microenvironment based on tumor spheroids to identify suppressors of anti-tumor immunity that directly act on interaction between CTL and tumor cells and to determine mechanisms of action. An adenosine 2A receptor antagonist, as enhanced by blockade of TIM3, slowed tumor growth in vivo. Engagement of the adenosine 2A receptor and TIM3 reduced tumor cell killing in spheroids, impaired CTL cytoskeletal polarization ex vivo and in vitro and inhibited CTL infiltration into tumors and spheroids. With this role in CTL killing, blocking A2AR and TIM3 may complement therapies that enhance T cell priming, e.g. anti-PD-1 and anti-CTLA-4.


Assuntos
Morte Celular , Citoesqueleto/fisiologia , Citosol/fisiologia , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor A2A de Adenosina/genética , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor A2A de Adenosina/metabolismo
19.
Bone Res ; 9(1): 39, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465741

RESUMO

Back pain is a common condition with a high social impact and represents a global health burden. Intervertebral disc disease (IVDD) is one of the major causes of back pain; no therapeutics are currently available to reverse this disease. The impact of bone mineral density (BMD) on IVDD has been controversial, with some studies suggesting osteoporosis as causative for IVDD and others suggesting it as protective for IVDD. Functional studies to evaluate the influence of genetic components of BMD in IVDD could highlight opportunities for drug development and repurposing. By taking a holistic 3D approach, we established an aging zebrafish model for spontaneous IVDD. Increased BMD in aging, detected by automated computational analysis, is caused by bone deformities at the endplates. However, aged zebrafish spines showed changes in bone morphology, microstructure, mineral heterogeneity, and increased fragility that resembled osteoporosis. Elements of the discs recapitulated IVDD symptoms found in humans: the intervertebral ligament (equivalent to the annulus fibrosus) showed disorganized collagen fibers and herniation, while the disc center (nucleus pulposus equivalent) showed dehydration and cellular abnormalities. We manipulated BMD in young zebrafish by mutating sp7 and cathepsin K, leading to low and high BMD, respectively. Remarkably, we detected IVDD in both groups, demonstrating that low BMD does not protect against IVDD, and we found a strong correlation between high BMD and IVDD. Deep learning was applied to high-resolution synchrotron µCT image data to analyze osteocyte 3D lacunar distribution and morphology, revealing a role of sp7 in controlling the osteocyte lacunar 3D profile. Our findings suggest potential avenues through which bone quality can be targeted to identify beneficial therapeutics for IVDD.

20.
Nucleic Acids Res ; 49(20): e118, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34417616

RESUMO

Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates.


Assuntos
Clivagem do DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento por Nanoporos/métodos , DNA/química , DNA/genética , Enzimas de Restrição do DNA/metabolismo , Motivos de Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA