Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Transl Exerc Biomed ; 1(1): 9-22, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38660119

RESUMO

Objectives: 'OMICs encapsulates study of scaled data acquisition, at the levels of DNA, RNA, protein, and metabolite species. The broad objectives of OMICs in biomedical exercise research are multifarious, but commonly relate to biomarker development and understanding features of exercise adaptation in health, ageing and metabolic diseases. Methods: This field is one of exponential technical (i.e., depth of feature coverage) and scientific (i.e., in health, metabolic conditions and ageing, multi-OMICs) progress adopting targeted and untargeted approaches. Results: Key findings in exercise biomedicine have led to the identification of OMIC features linking to heritability or adaptive responses to exercise e.g., the forging of GWAS/proteome/metabolome links to cardiovascular fitness and metabolic health adaptations. The recent addition of stable isotope tracing to proteomics ('dynamic proteomics') and metabolomics ('fluxomics') represents the next phase of state-of-the-art in 'OMICS. Conclusions: These methods overcome limitations associated with point-in-time 'OMICs and can be achieved using substrate-specific tracers or deuterium oxide (D2O), depending on the question; these methods could help identify how individual protein turnover and metabolite flux may explain exercise responses. We contend application of these methods will shed new light in translational exercise biomedicine.

2.
J Cachexia Sarcopenia Muscle ; 15(2): 603-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38343303

RESUMO

BACKGROUND: Bed-rest (BR) of only a few days duration reduces muscle protein synthesis and induces skeletal muscle atrophy and insulin resistance, but the scale and juxtaposition of these events have not been investigated concurrently in the same individuals. Moreover, the impact of short-term exercise-supplemented remobilization (ESR) on muscle volume, protein turnover and leg glucose uptake (LGU) in humans is unknown. METHODS: Ten healthy males (24 ± 1 years, body mass index 22.7 ± 0.6 kg/m2) underwent 3 days of BR, followed immediately by 3 days of ESR consisting of 5 × 30 maximal voluntary single-leg isokinetic knee extensions at 90°/s each day. An isoenergetic diet was maintained throughout the study (30% fat, 15% protein and 55% carbohydrate). Resting LGU was calculated from arterialized-venous versus venous difference across the leg and leg blood flow during the steady-state of a 3-h hyperinsulinaemic-euglycaemic clamp (60 mU/m2/min) measured before BR, after BR and after remobilization. Glycogen content was measured in vastus lateralis muscle biopsy samples obtained before and after each clamp. Leg muscle volume (LMV) was measured using magnetic resonance imaging before BR, after BR and after remobilization. Cumulative myofibrillar protein fractional synthetic rate (FSR) and whole-body muscle protein breakdown (MPB) were measured over the course of BR and remobilization using deuterium oxide and 3-methylhistidine stable isotope tracers that were administered orally. RESULTS: Compared with before BR, there was a 45% decline in insulin-stimulated LGU (P < 0.05) after BR, which was paralleled by a reduction in insulin-stimulated leg blood flow (P < 0.01) and removal of insulin-stimulated muscle glycogen storage. These events were accompanied by a 43% reduction in myofibrillar protein FSR (P < 0.05) and a 2.5% decrease in LMV (P < 0.01) during BR, along with a 30% decline in whole-body MPB after 2 days of BR (P < 0.05). Myofibrillar protein FSR and LMV were restored by 3 days of ESR (P < 0.01 and P < 0.01, respectively) but not by ambulation alone. However, insulin-stimulated LGU and muscle glycogen storage were not restored by ESR. CONCLUSIONS: Three days of BR caused concurrent reductions in LMV, myofibrillar protein FSR, myofibrillar protein breakdown and insulin-stimulated LGU, leg blood flow and muscle glycogen storage in healthy, young volunteers. Resistance ESR restored LMV and myofibrillar protein FSR, but LGU and muscle glycogen storage remained depressed, highlighting divergences in muscle fuel and protein metabolism. Furthermore, ambulation alone did not restore LMV and myofibrillar protein FSR in the non-exercised contralateral limb, emphasizing the importance of exercise rehabilitation following even short-term BR.


Assuntos
Glucose , Músculo Esquelético , Masculino , Humanos , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glicogênio/metabolismo , Proteínas Musculares/metabolismo
3.
Nat Commun ; 14(1): 8345, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102152

RESUMO

Bioenergetic failure caused by impaired utilisation of glucose and fatty acids contributes to organ dysfunction across multiple tissues in critical illness. Ketone bodies may form an alternative substrate source, but the feasibility and safety of inducing a ketogenic state in physiologically unstable patients is not known. Twenty-nine mechanically ventilated adults with multi-organ failure managed on intensive care units were randomised (Ketogenic n = 14, Control n = 15) into a two-centre pilot open-label trial of ketogenic versus standard enteral feeding. The primary endpoints were assessment of feasibility and safety, recruitment and retention rates and achievement of ketosis and glucose control. Ketogenic feeding was feasible, safe, well tolerated and resulted in ketosis in all patients in the intervention group, with a refusal rate of 4.1% and 82.8% retention. Patients who received ketogenic feeding had fewer hypoglycaemic events (0.0% vs. 1.6%), required less exogenous international units of insulin (0 (Interquartile range 0-16) vs.78 (Interquartile range 0-412) but had slightly more daily episodes of diarrhoea (53.5% vs. 42.9%) over the trial period. Ketogenic feeding was feasible and may be an intervention for addressing bioenergetic failure in critically ill patients. Clinical Trials.gov registration: NCT04101071.


Assuntos
Estado Terminal , Cetose , Adulto , Humanos , Projetos Piloto , Unidades de Terapia Intensiva , Corpos Cetônicos
4.
Geroscience ; 45(1): 331-344, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35948859

RESUMO

Exercise training can induce adaptive changes to tendon tissue both structurally and mechanically; however, the underlying compositional changes that contribute to these alterations remain uncertain in humans, particularly in the context of the ageing tendon. The aims of the present study were to determine the molecular changes with ageing in patellar tendons in humans, as well as the responses to exercise and exercise type (eccentric (ECC) and concentric (CON)) in young and old patellar tendon. Healthy younger males (age 23.5 ± 6.1 years; n = 27) and older males (age 68.5 ± 1.9 years; n = 27) undertook 8 weeks of CON or ECC training (3 times per week; at 60% of 1 repetition maximum (1RM)) or no training. Subjects consumed D2O throughout the protocol and tendon biopsies were collected after 4 and 8 weeks for measurement of fractional synthetic rates (FSR) of tendon protein synthesis and gene expression. There were increases in tendon protein synthesis following 4 weeks of CON and ECC training (P < 0.01; main effect by ANOVA), with no differences observed between young and old males, or training type. At the transcriptional level however, ECC in young adults generally induced greater responses of collagen and extracellular matrix-related genes than CON, while older individuals had reduced gene expression responses to training. Different training types did not appear to induce differential tendon responses in terms of protein synthesis, and while tendons from older adults exhibited different transcriptional responses to younger individuals, protein turnover changes with training were similar for both age groups.


Assuntos
Ligamento Patelar , Masculino , Humanos , Idoso , Adolescente , Ligamento Patelar/fisiologia , Exercício Físico/fisiologia , Envelhecimento
5.
J Cachexia Sarcopenia Muscle ; 13(6): 2999-3013, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058634

RESUMO

BACKGROUND: Bed rest (BR) reduces whole-body insulin-stimulated glucose disposal (GD) and alters muscle fuel metabolism, but little is known about metabolic adaptation from acute to chronic BR nor the mechanisms involved, particularly when volunteers are maintained in energy balance. METHODS: Healthy males (n = 10, 24.0 ± 1.3 years), maintained in energy balance, underwent 3-day BR (acute BR). A second cohort matched for sex and body mass index (n = 20, 34.2 ± 1.8 years) underwent 56-day BR (chronic BR). A hyperinsulinaemic euglycaemic clamp (60 mU/m2 /min) was performed to determine rates of whole-body insulin-stimulated GD before and after BR (normalized to lean body mass). Indirect calorimetry was performed before and during steady state of each clamp to calculate rates of whole-body fuel oxidation. Muscle biopsies were taken to determine muscle glycogen, metabolite and intramyocellular lipid (IMCL) contents, and the expression of 191 mRNA targets before and after BR. Two-way repeated measures analysis of variance was used to detect differences in endpoint measures. RESULTS: Acute BR reduced insulin-mediated GD (Pre 11.5 ± 0.7 vs. Post 9.3 ± 0.6 mg/kg/min, P < 0.001), which was unchanged in magnitude following chronic BR (Pre 10.2 ± 0.4 vs. Post 7.9 ± 0.3 mg/kg/min, P < 0.05). This reduction in GD was paralleled by the elimination of the 35% increase in insulin-stimulated muscle glycogen storage following both acute and chronic BR. Acute BR had no impact on insulin-stimulated carbohydrate (CHO; Pre 3.69 ± 0.39 vs. Post 4.34 ± 0.22 mg/kg/min) and lipid (Pre 1.13 ± 0.14 vs. Post 0.59 ± 0.11 mg/kg/min) oxidation, but chronic BR reduced CHO oxidation (Pre 3.34 ± 0.18 vs. Post 2.72 ± 0.13 mg/kg/min, P < 0.05) and blunted the magnitude of insulin-mediated inhibition of lipid oxidation (Pre 0.60 ± 0.07 vs. Post 0.85 ± 0.06 mg/kg/min, P < 0.05). Neither acute nor chronic BR increased muscle IMCL content. Plentiful mRNA abundance changes were detected following acute BR, which waned following chronic BR and reflected changes in fuel oxidation and muscle glycogen storage at this time point. CONCLUSIONS: Acute BR suppressed insulin-stimulated GD and storage, but the extent of this suppression increased no further in chronic BR. However, insulin-mediated inhibition of fat oxidation after chronic BR was less than acute BR and was accompanied by blunted CHO oxidation. The juxtaposition of these responses shows that the regulation of GD and storage can be dissociated from substrate oxidation. Additionally, the shift in substrate oxidation after chronic BR was not explained by IMCL accumulation but reflected by muscle mRNA and pyruvate dehydrogenase kinase 4 protein abundance changes, pointing to lack of muscle contraction per se as the primary signal for muscle adaptation.


Assuntos
Glucose , Músculo Esquelético , Masculino , Humanos , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glicogênio/metabolismo , RNA Mensageiro/metabolismo , Lipídeos
6.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575939

RESUMO

The peroxisome proliferator-activated receptor (PPAR) family of transcription factors has been demonstrated to play critical roles in regulating fuel selection, energy expenditure and inflammation in skeletal muscle and other tissues. Activation of PPARs, through endogenous fatty acids and fatty acid metabolites or synthetic compounds, has been demonstrated to have lipid-lowering and anti-diabetic actions. This review will aim to provide a comprehensive overview of the functions of PPARs in energy homeostasis, with a focus on the impacts of PPAR agonism on muscle metabolism and function. The dysregulation of energy homeostasis in skeletal muscle is a frequent underlying characteristic of inflammation-related conditions such as sepsis. However, the potential benefits of PPAR agonism on skeletal muscle protein and fuel metabolism under these conditions remains under-investigated and is an area of research opportunity. Thus, the effects of PPARγ agonism on muscle inflammation and protein and carbohydrate metabolism will be highlighted, particularly with its potential relevance in sepsis-related metabolic dysfunction. The impact of PPARδ agonism on muscle mitochondrial function, substrate metabolism and contractile function will also be described.


Assuntos
Inflamação/genética , Músculo Esquelético/metabolismo , PPAR gama/genética , Sepse/genética , Metabolismo Energético/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Contração Muscular/genética , Receptores Ativados por Proliferador de Peroxissomo/genética , Sepse/metabolismo , Sepse/patologia
7.
Exp Physiol ; 106(3): 585-592, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33369803

RESUMO

NEW FINDINGS: What is the central question of this study? The compound sodium phenylbutyrate (PB) has been shown to promote branched-chain amino acid (BCAA) catabolism, and as such has been proposed as a treatment for disorders with enhanced BCAA levels: does PB induce muscle protein catabolism by forcing BCAA degradation away from muscle protein synthesis and mechanistic target of rapamycin (mTOR) inhibition? What is the main finding and its importance? Accelerated BCAA catabolism using PB resulted in adverse effects related to mTOR signalling and muscle protein metabolism in skeletal muscle cells, which may limit its application in conditions where muscle wasting is a risk. ABSTRACT: The compound sodium phenylbutyrate (PB) has been used for reducing ammonia in patients with urea cycle disorders and proposed as a treatment for disorders with enhanced branched-chain amino acid (BCAA) levels, due to its effects on promoting BCAA catabolism. In skeletal muscle cells, we hypothesised that PB would induce muscle protein catabolism due to forcing BCAA degradation away from muscle protein synthesis and downregulating mechanistic target of rapamycin (mTOR). PB reduced medium BCAA and branched-chain keto acid (BCKA) concentrations, while total cell protein (-21%; P < 0.001 vs. control) and muscle protein synthesis (-25%; P < 0.001 vs. control; assessed by measurement of puromycin incorporation into polypeptides) were decreased with PB. The regulator of anabolic pathways mTOR and its downstream components were impaired with PB treatment. The present results indicate that accelerated BCAA catabolism using PB resulted in adverse effects related to mTOR signalling and muscle protein metabolism, which may limit its application in settings where muscle wasting is a risk.


Assuntos
Músculo Esquelético , Fenilbutiratos , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Linhagem Celular , Camundongos , Músculo Esquelético/metabolismo , Oxirredutases/metabolismo , Fenilbutiratos/metabolismo , Fenilbutiratos/farmacologia
8.
Am J Physiol Cell Physiol ; 319(6): C1151-C1157, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026831

RESUMO

Branched-chain amino acids (BCAAs) are essential for critical metabolic processes; however, recent studies have associated elevated plasma BCAA levels with increased risk of insulin resistance. Using skeletal muscle cells, we aimed to determine whether continued exposure of high extracellular BCAA would result in impaired insulin signaling and whether the compound sodium phenylbutyrate (PB), which induces BCAA metabolism, would lower extracellular BCAA, thereby alleviating their potentially inhibitory effects on insulin-mediated signaling. Prolonged exposure of elevated BCAA to cells resulted in impaired insulin receptor substrate 1/AKT signaling and insulin-stimulated glycogen synthesis. PB significantly reduced media BCAA and branched-chain keto acid concentrations and increased phosphorylation of AKT [+2.0 ± 0.1-fold; P < 0.001 versus without (-)PB] and AS160 (+3.2 ± 0.2-fold; P < 0.001 versus -PB); however, insulin-stimulated glycogen synthesis was further reduced upon PB treatment. Continued exposure of high BCAA resulted in impaired intracellular insulin signaling and glycogen synthesis, and while forcing BCAA catabolism using PB resulted in increases in proteins important for regulating glucose uptake, PB did not prevent the impairments in glycogen synthesis with BCAA exposure.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Glicogênio/biossíntese , Resistência à Insulina/fisiologia , Insulina/metabolismo , Músculo Esquelético/metabolismo , Animais , Linhagem Celular , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Células Musculares/metabolismo , Fenilbutiratos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Nutrients ; 12(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883033

RESUMO

Dietary protein is critical for the maintenance of musculoskeletal health, whereappropriate intake (i.e., source, dose, timing) can mitigate declines in muscle and bone mass and/orfunction. Animal-derived protein is a potent anabolic source due to rapid digestion and absorptionkinetics stimulating robust increases in muscle protein synthesis and promoting bone accretion andmaintenance. However, global concerns surrounding environmental sustainability has led to anincreasing interest in plant- and collagen-derived protein as alternative or adjunct dietary sources.This is despite the lower anabolic profile of plant and collagen protein due to the inferior essentialamino acid profile (e.g., lower leucine content) and subordinate digestibility (versus animal). Thisreview evaluates the efficacy of animal-, plant- and collagen-derived proteins in isolation, and asprotein blends, for augmenting muscle and bone metabolism and health in the context of ageing,exercise and energy restriction.


Assuntos
Proteínas Animais da Dieta/farmacocinética , Osso e Ossos/efeitos dos fármacos , Proteínas Alimentares/farmacocinética , Músculo Esquelético/efeitos dos fármacos , Proteínas de Vegetais Comestíveis/farmacocinética , Envelhecimento/metabolismo , Animais , Remodelação Óssea/efeitos dos fármacos , Restrição Calórica , Colágeno/química , Exercício Físico/fisiologia , Humanos , Fenômenos Fisiológicos da Nutrição/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos
10.
Aging Cell ; 19(9): e13202, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32744385

RESUMO

BACKGROUND: Despite its known insulin-independent effects, glucagon-like peptide-1 (GLP-1) role in muscle protein turnover has not been explored under fed-state conditions or in the context of older age, when declines in insulin sensitivity and protein anabolism, as well as losses of muscle mass and function, occur. METHODS: Eight older-aged men (71 ± 1 year, mean ± SEM) were studied in a crossover trial. Baseline measures were taken over 3 hr, prior to a 3 hr postprandial insulin (~30 mIU ml-1 ) and glucose (7-7.5 mM) clamp, alongside I.V. infusions of octreotide and Vamin 14 (±infusions of GLP-1). Four muscle biopsies were taken, and muscle protein turnover was quantified via incorporation of 13 C6 phenylalanine and arteriovenous balance kinetics, using mass spectrometry. Leg macro- and microvascular flow was assessed via ultrasound and anabolic signalling by immunoblotting. GLP-1 and insulin were measured by ELISA. RESULTS: GLP-1 augmented muscle protein synthesis (MPS; fasted: 0.058 ± 0.004% hr-1 vs. postprandial: 0.102 ± 0.005% hr-1 , p < 0.01), in comparison with non-GLP-1 trials. Muscle protein breakdown (MPB) was reduced throughout clamp period, while net protein balance across the leg became positive in both groups. Total femoral leg blood flow was unchanged by the clamp; however, muscle microvascular blood flow (MBF) was significantly elevated in both groups, and to a significantly greater extent in the GLP-1 group (MBF: 5 ± 2 vs. 1.9 ± 1 fold change +GLP-1 and -GLP-1, respectively, p < 0.01). Activation of the Akt-mTOR signalling was similar across both trials. CONCLUSION: GLP-1 infusion markedly enhanced postprandial microvascular perfusion and further stimulated muscle protein metabolism, primarily through increased MPS, during a postprandial insulin hyperaminoacidaemic clamp.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Músculo Esquelético/metabolismo , Idoso , Feminino , Humanos , Masculino
11.
Cell Rep ; 32(5): 107980, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755574

RESUMO

Loading of skeletal muscle changes the tissue phenotype reflecting altered metabolic and functional demands. In humans, heterogeneous adaptation to loading complicates the identification of the underpinning molecular regulators. A within-person differential loading and analysis strategy reduces heterogeneity for changes in muscle mass by ∼40% and uses a genome-wide transcriptome method that models each mRNA from coding exons and 3' and 5' untranslated regions (UTRs). Our strategy detects ∼3-4 times more regulated genes than similarly sized studies, including substantial UTR-selective regulation undetected by other methods. We discover a core of 141 genes correlated to muscle growth, which we validate from newly analyzed independent samples (n = 100). Further validating these identified genes via RNAi in primary muscle cells, we demonstrate that members of the core genes were regulators of protein synthesis. Using proteome-constrained networks and pathway analysis reveals notable relationships with the molecular characteristics of human muscle aging and insulin sensitivity, as well as potential drug therapies.


Assuntos
Músculo Esquelético/fisiologia , Adolescente , Adulto , Exercício Físico , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Tamanho do Órgão , Biossíntese de Proteínas , Proteoma/metabolismo , RNA/metabolismo , Transdução de Sinais , Suporte de Carga , Adulto Jovem
12.
Metabol Open ; 5: 100022, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32494771

RESUMO

BACKGROUND/AIMS: Methodological challenges have been associated with the dynamic measurement of muscle protein breakdown (MPB), as have the measurement of both muscle protein synthesis (MPS) and MPB within the same experiment. Our aim was to use the transmethylation properties of methionine as proof-of-concept to measure rates of MPB via its methylation of histidine within skeletal muscle myofibrillar proteins, whilst simultaneously utilising methionine incorporation into bound protein to measure MPS. RESULTS: During the synthesis measurement period, incorporation of methyl[D3]-13C-methionine into cellular protein in C2C12 myotubes was observed (representative of MPS), alongside an increase in the appearance of methyl[D3]-methylhistidine into the media following methylation of histidine (representative of MPB). For further validation of this approach, fractional synthetic rates (FSR) of muscle protein were increased following treatment of the cells with the anabolic factors insulin-like growth factor-1 (IGF-1) and insulin, while dexamethasone expectedly reduced MPS. Conversely, rates of MPB were reduced with IGF-1 and insulin treatments, whereas dexamethasone accelerated MPB. CONCLUSIONS: This is a novel stable isotope tracer approach that permits the dual assessment of muscle cellular protein synthesis and breakdown rates, through the provision of a single methionine amino acid tracer that could be utilised in a wide range of biological settings.

13.
Am J Physiol Regul Integr Comp Physiol ; 319(2): R184-R194, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32579386

RESUMO

Recent large genome-wide association studies (GWAS) have independently identified a set of genetic loci associated with lean body mass (LBM) and handgrip strength (HGS). Evaluation of these candidate single-nucleotide polymorphisms (SNPs) may be useful to investigate genetic traits of populations at higher or lower risk of muscle dysfunction. As such, we investigated associations between six SNPs linked to LBM or HGS in a population of elite master athletes (MA) and age-matched controls as a representative population of older individuals with variable maintenance of muscle mass and function. Genomic DNA was isolated from buffy coat samples of 96 individuals [consisting of 48 MA (71 ± 6 yr, age-graded performance 83 ± 9%) and 48 older controls (75 ± 6 yr)]. SNP validation and sample genotyping were conducted using the tetra-primer amplification refractory mutation system (ARMS). For the three SNPs analyzed that were previously associated with LBM (FTO, IRS1, and ADAMTSL3), multinomial logistic regression revealed a significant association of the ADAMTSL3 genotype with %LBM (P < 0.01). For the three HGS-linked SNPs, neither GBF1 nor GLIS1 showed any association with HGS, but for TGFA, multinomial logistic regression revealed a significant association of genotype with HGS (P < 0.05). For ADAMTSL3, there was an enrichment of the effect allele in the MA (P < 0.05, Fisher's exact test). Collectively, of the six SNPs analyzed, ADAMTSL3 and TGFA showed significant associations with LBM and HGS, respectively. The functional relevance of the ADAMTSL3 SNP in body composition and of TGFA in strength may highlight a genetic component of the elite MA phenotype.


Assuntos
Atletas , Composição Corporal/genética , Genótipo , Força da Mão/fisiologia , Polimorfismo de Nucleotídeo Único , Idoso , Idoso de 80 Anos ou mais , Alelos , Índice de Massa Corporal , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
14.
J Cachexia Sarcopenia Muscle ; 10(6): 1276-1294, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31568675

RESUMO

BACKGROUND: The andropause is associated with declines in serum testosterone (T), loss of muscle mass (sarcopenia), and frailty. Two major interventions purported to offset sarcopenia are anabolic steroid therapies and resistance exercise training (RET). Nonetheless, the efficacy and physiological and molecular impacts of T therapy adjuvant to short-term RET remain poorly defined. METHODS: Eighteen non-hypogonadal healthy older men, 65-75 years, were assigned in a random double-blinded fashion to receive, biweekly, either placebo (P, saline, n = 9) or T (Sustanon 250 mg, n = 9) injections over 6 week whole-body RET (three sets of 8-10 repetitions at 80% one-repetition maximum). Subjects underwent dual-energy X-ray absorptiometry, ultrasound of vastus lateralis (VL) muscle architecture, and knee extensor isometric muscle force tests; VL muscle biopsies were taken to quantify myogenic/anabolic gene expression, anabolic signalling, muscle protein synthesis (D2 O), and breakdown (extrapolated). RESULTS: Testosterone adjuvant to RET augmented total fat-free mass (P=0.007), legs fat-free mass (P=0.02), and appendicular fat-free mass (P=0.001) gains while decreasing total fat mass (P=0.02). Augmentations in VL muscle thickness, fascicle length, and quadriceps cross-section area with RET occured to a greater extent in T (P < 0.05). Sum strength (P=0.0009) and maximal voluntary contract (e.g. knee extension at 70°) (P=0.002) increased significantly more in the T group. Mechanistically, both muscle protein synthesis rates (T: 2.13 ± 0.21%·day-1 vs. P: 1.34 ± 0.13%·day-1 , P=0.0009) and absolute breakdown rates (T: 140.2 ± 15.8 g·day-1 vs. P: 90.2 ± 11.7 g·day-1 , P=0.02) were elevated with T therapy, which led to higher net turnover and protein accretion in the T group (T: 8.3 ± 1.4 g·day-1 vs. P: 1.9 ± 1.2 g·day-1 , P=0.004). Increases in ribosomal biogenesis (RNA:DNA ratio); mRNA expression relating to T metabolism (androgen receptor: 1.4-fold; Srd5a1: 1.6-fold; AKR1C3: 2.1-fold; and HSD17ß3: two-fold); insulin-like growth factor (IGF)-1 signalling [IGF-1Ea (3.5-fold) and IGF-1Ec (three-fold)] and myogenic regulatory factors; and the activity of anabolic signalling (e.g. mTOR, AKT, and RPS6; P < 0.05) were all up-regulated with T therapy. Only T up-regulated mitochondrial citrate synthase activity (P=0.03) and transcription factor A (1.41 ± 0.2-fold, P=0.0002), in addition to peroxisome proliferator-activated receptor-γ co-activator 1-α mRNA (1.19 ± 0.21-fold, P=0.037). CONCLUSIONS: Administration of T adjuvant to RET enhanced skeletal muscle mass and performance, while up-regulating myogenic gene programming, myocellular translational efficiency and capacity, collectively resulting in higher protein turnover, and net protein accretion. T coupled with RET is an effective short-term intervention to improve muscle mass/function in older non-hypogonadal men.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Músculo Quadríceps/diagnóstico por imagem , Treinamento Resistido/métodos , Testosterona/administração & dosagem , Absorciometria de Fóton , Idoso , Método Duplo-Cego , Esquema de Medicação , Regulação da Expressão Gênica/efeitos dos fármacos , Voluntários Saudáveis , Humanos , Injeções , Masculino , Redes e Vias Metabólicas/efeitos dos fármacos , Músculo Quadríceps/efeitos dos fármacos , Músculo Quadríceps/metabolismo , Testosterona/farmacologia , Resultado do Tratamento , Regulação para Cima
15.
Genome Biol ; 20(1): 152, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375147

RESUMO

Jacob and Speed did not identify even a single example of a '150-gene-set' that was statistically significant at classifying Alzheimer's disease (AD) samples, or age in independent studies. We attempt to clarify the various misunderstandings, below.


Assuntos
Doença de Alzheimer , Envelhecimento Saudável , Cognição , Nível de Saúde , Humanos , RNA
16.
Aging Cell ; 18(4): e12970, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31168962

RESUMO

Emerging evidence indicates that molecular aging may follow nonlinear or discontinuous trajectories. Whether this occurs in human neuromuscular tissue, particularly for the noncoding transcriptome, and independent of metabolic and aerobic capacities, is unknown. Applying our novel RNA method to quantify tissue coding and long noncoding RNA (lncRNA), we identified ~800 transcripts tracking with age up to ~60 years in human muscle and brain. In silico analysis demonstrated that this temporary linear "signature" was regulated by drugs, which reduce mortality or extend life span in model organisms, including 24 inhibitors of the IGF-1/PI3K/mTOR pathway that mimicked, and 5 activators that opposed, the signature. We profiled Rapamycin in nondividing primary human myotubes (n = 32 HTA 2.0 arrays) and determined the transcript signature for reactive oxygen species in neurons, confirming that our age signature was largely regulated in the "pro-longevity" direction. Quantitative network modeling demonstrated that age-regulated ncRNA equaled the contribution of protein-coding RNA within structures, but tended to have a lower heritability, implying lncRNA may better reflect environmental influences. Genes ECSIT, UNC13, and SKAP2 contributed to a network that did not respond to Rapamycin, and was associated with "neuron apoptotic processes" in protein-protein interaction analysis (FDR = 2.4%). ECSIT links inflammation with the continued age-related downwards trajectory of mitochondrial complex I gene expression (FDR < 0.01%), implying that sustained inhibition of ECSIT may be maladaptive. The present observations link, for the first time, model organism longevity programs with the endogenous but temporary genome-wide responses to aging in humans, revealing a pattern that may ultimately underpin personalized rates of health span.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Longevidade/genética , RNA Longo não Codificante/genética , Transcriptoma , Adulto , Córtex Cerebral/metabolismo , Redes Reguladoras de Genes , Humanos , Fibras Musculares Esqueléticas/metabolismo , Neurônios/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Transcricional/efeitos dos fármacos , Gêmeos Monozigóticos/genética
17.
J Funct Foods ; 56: 216-223, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31217823

RESUMO

Cocoa flavanols and fish oil omega-3 fatty acids are two bio-active nutrients that may improve muscle microvascular function, insulin sensitivity and mitochondrial function in older adults. We assessed changes in gene expression of these pathways in muscle from two nutritional intervention studies in older healthy volunteers: (i) 6-weeks daily fish oil supplementation in older females (3.4 g/d; age: 64.4 ±â€¯0.8 y, BMI: 26.2 ±â€¯0.7 kg/m2), and (ii) 7-day daily cocoa flavanol supplementation in older males (1050 mg/d; age: 70.1 ±â€¯0.9 y, BMI: 25.7 ±â€¯0.6 kg/m2). There was a main effect of 6-weeks fish oil supplementation on angiogenesis gene expression, with no overall changes in mitochondrial or insulin signaling genes. 7-day cocoa supplementation elicited changes in extracellular matrix (ECM) related genes. Thus, the effects of fish oil supplementation on vascular remodeling in skeletal muscle, and ECM remodeling with cocoa supplementation have emerged as areas for future study.

18.
J Physiol ; 597(5): 1259-1270, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968251

RESUMO

Loss of muscle mass and insulin sensitivity are common phenotypic traits of immobilisation and increased inflammatory burden. The suppression of muscle protein synthesis is the primary driver of muscle mass loss in human immobilisation, and includes blunting of post-prandial increases in muscle protein synthesis. However, the mechanistic drivers of this suppression are unresolved. Immobilisation also induces limb insulin resistance in humans, which appears to be attributable to the reduction in muscle contraction per se. Again mechanistic insight is missing such that we do not know how muscle senses its "inactivity status" or whether the proposed drivers of muscle insulin resistance are simply arising as a consequence of immobilisation. A heightened inflammatory state is associated with major and rapid changes in muscle protein turnover and mass, and dampened insulin-stimulated glucose disposal and oxidation in both rodents and humans. A limited amount of research has attempted to elucidate molecular regulators of muscle mass loss and insulin resistance during increased inflammatory burden, but rarely concurrently. Nevertheless, there is evidence that Akt (protein kinase B) signalling and FOXO transcription factors form part of a common signalling pathway in this scenario, such that molecular cross-talk between atrophy and insulin signalling during heightened inflammation is believed to be possible. To conclude, whilst muscle mass loss and insulin resistance are common end-points of immobilisation and increased inflammatory burden, a lack of understanding of the mechanisms responsible for these traits exists such that a substantial gap in understanding of the pathophysiology in humans endures.


Assuntos
Repouso em Cama , Resistência à Insulina , Músculo Esquelético/anatomia & histologia , Animais , Humanos , Inflamação/complicações , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiologia
19.
J Cell Physiol ; 233(12): 9663-9673, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144060

RESUMO

Hyperammonaemia and hyperethanolaemia are thought to be driving factors behind skeletal muscle myopathy in liver disease, that is, cirrhosis. Despite this, the singular and combined impacts of ethanol- and ammonia-induced protein catabolism are poorly defined. As such, we aimed to dissect out the effects of ammonia and ethanol on muscle catabolism. Murine C2C12 myotubes were treated with ammonium acetate (10 mM) and ethanol (100 mM) either alone or in combination for 4 hr and/or 24 hr. Myotube diameter, muscle protein synthesis and anabolic and catabolic signalling pathways were assessed. In separate experiments, cells were cotreated with selected inhibitors of protein breakdown to assess the importance of proteolytic pathways in protein loss with ammonia and ethanol. Ammonia and ethanol in combination resulted in a reduction in myotube width and total protein content, which was greater than the reduction observed with ammonia alone. Both ammonia and ethanol caused reductions in protein synthesis, as assessed by puromycin incorporation. There was also evidence of impairments in regulation of protein translation, and increased protein expression of markers of muscle protein breakdown. Myotube protein loss with ammonia plus ethanol was not affected by autophagy inhibition, but was completely prevented by proteasome inhibition. Thus, combined ammonia and ethanol incubation of C2C12 myotubes exacerbated myotube atrophy and dysregulation of anabolic and catabolic signalling pathways associated with either component individually. Ubiquitin proteasome-mediated protein breakdown appears to play an important role in myotube protein loss with ethanol and ammonia.


Assuntos
Etanol/sangue , Hiperamonemia/metabolismo , Células Musculares/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Amônia/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Etanol/toxicidade , Camundongos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Biochem Biophys Res Commun ; 494(3-4): 608-614, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29054406

RESUMO

The precise roles that the major proteolytic pathways play in the regulation of skeletal muscle mass remain incompletely understood, in part due to technical limitations associated with current techniques used to quantify muscle protein breakdown (MPB). We aimed to develop a method to assess MPB in cells, based on loss of puromycin labelling of translated polypeptide chains. Following an initial 24 h incubation period with puromycin (1 µM), loss of puromycin labelling from murine C2C12 myotubes was assessed over 48 h, both in the presence or absence of protein synthesis inhibitor cycloheximide (CHX). To validate the method, loss of puromycin labelling was determined from cells treated with selected compounds known to influence MPB (e.g. serum starvation, Dexamethasone (Dex), tumour necrosis factor alpha (TNF-α) and MG-132)). Reported established (static) markers of MPB were measured following each treatment. Loss of puromycin labelling from cells pre-incubated with puromycin was evident over a 48 h period, both with and without CHX. Treatment with Dex (-14 ± 2% vs. Ctl; P < 0.01), TNF-α (-20 ± 4% vs. Ctl; P < 0.001) and serum starvation (-14 ± 4% vs. Ctl; P < 0.01) caused a greater loss of puromycin labelling than untreated controls, while the proteasome inhibitor MG-132 caused a relatively lower loss of puromycin labelling (+15 ± 8% vs. Ctl; P < 0.05). Thus, we have developed a novel decorporation method for measuring global changes in MPB, validated in vitro using an established muscle cell line. It is anticipated this non isotopic-tracer alternative to measuring MPB will facilitate insight into the mechanisms that regulate muscle mass/MPB both in vitro, and perhaps, in vivo.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Puromicina/farmacocinética , Ensaio Radioligante/métodos , Animais , Linhagem Celular , Marcação por Isótopo/métodos , Taxa de Depuração Metabólica , Camundongos , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA