Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18469, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323686

RESUMO

The ill-posed problem of phase retrieval in optics, using one or more intensity measurements, has a multitude of applications using electromagnetic or matter waves. Many phase retrieval algorithms are computed on pixel arrays using discrete Fourier transforms due to their high computational efficiency. However, the mathematics underpinning these algorithms is typically formulated using continuous mathematics, which can result in a loss of spatial resolution in the reconstructed images. Herein we investigate how phase retrieval algorithms for propagation-based phase-contrast X-ray imaging can be rederived using discrete mathematics and result in more precise retrieval for single- and multi-material objects and for spectral image decomposition. We validate this theory through experimental measurements of spatial resolution using computed tomography (CT) reconstructions of plastic phantoms and biological tissues, using detectors with a range of imaging system point spread functions (PSFs). We demonstrate that if the PSF substantially suppresses high spatial frequencies, the potential improvement from utilising the discrete derivation is limited. However, with detectors characterised by a single pixel PSF (e.g. direct, photon-counting X-ray detectors), a significant improvement in spatial resolution can be obtained, demonstrated here at up to 17%.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Fótons , Matemática
2.
Front Pediatr ; 10: 990923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245717

RESUMO

Background: Lung ultrasound (LUS) is a safe and non-invasive tool that can potentially assess regional lung aeration in newborn infants and reduce the need for X-ray imaging. LUS produces images with characteristic artifacts caused by the presence of air in the lung, but it is unknown if LUS can accurately detect changes in lung air volumes after birth. This study compared LUS images with lung volume measurements from high-resolution computed tomography (CT) scans to determine if LUS can accurately provide relative measures of lung aeration. Methods: Deceased near-term newborn lambs (139 days gestation, term ∼148 days) were intubated and the chest imaged using LUS (bilaterally) and phase contrast x-ray CT scans at increasing static airway pressures (0-50 cmH2O). CT scans were analyzed to calculate regional air volumes and correlated with measures from LUS images. These measures included (i) LUS grade; (ii) brightness (mean and coefficient of variation); and (iii) area under the Fourier power spectra within defined frequency ranges. Results: All LUS image analysis techniques correlated strongly with air volumes measured by CT (p < 0.01). When imaging statistics were combined in a multivariate linear regression model, LUS predicted the proportion of air in the underlying lung with moderate accuracy (95% prediction interval ± 22.15%, r 2 = 0.71). Conclusion: LUS can provide relative measures of lung aeration after birth in neonatal lambs. Future studies are needed to determine if LUS can also provide a simple means to assess air volumes and individualize aeration strategies for critically ill newborns in real time.

3.
Phys Med Biol ; 65(18): 185014, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32946429

RESUMO

This paper expands the linear iterative near-field phase retrieval (LIPR) formalism to achieve quantitative material thickness decomposition. Propagation-based phase contrast x-ray imaging with subsequent phase retrieval has been shown to improve the signal-to-noise ratio (SNR) by factors of up to hundreds compared to conventional x-ray imaging. This is a key step in biomedical imaging, where radiation exposure must be kept low without compromising the SNR. However, for a satisfactory phase retrieval from a single measurement, assumptions must be made about the object investigated. To avoid such assumptions, we use two measurements collected at the same propagation distance but at different x-ray energies. Phase retrieval is then performed by incorporating the Alvarez-Macovski (AM) model, which models the x-ray interactions as being comprised of distinct photoelectric and Compton scattering components. We present the first application of dual-energy phase retrieval with the AM model to monochromatic experimental x-ray projections at two different energies for obtaining split x-ray interactions. Our phase retrieval method allows us to separate the object investigated into the projected thicknesses of two known materials. Our phase retrieval output leads to no visible loss in spatial resolution while the SNR improves by factors of 2 to 10. This corresponds to a possible x-ray dose reduction by a factor of 4 to 100, under the Poisson noise assumption.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Modelos Lineares , Imagens de Fantasmas , Razão Sinal-Ruído
4.
IEEE Trans Med Imaging ; 39(12): 3891-3899, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32746132

RESUMO

Material decomposition in X-ray imaging uses the energy-dependence of attenuation to digitally decompose an object into specific constituent materials, generally at the cost of enhanced image noise. Propagation-based X-ray phase-contrast imaging is a developing technique that can be used to reduce image noise, in particular from weakly attenuating objects. In this paper, we combine spectral phase-contrast imaging with material decomposition to both better visualize weakly attenuating features and separate them from overlying objects in radiography. We derive an algorithm that performs both tasks simultaneously and verify it against numerical simulations and experimental measurements of ideal two-component samples composed of pure aluminum and poly(methyl methacrylate). Additionally, we showcase first imaging results of a rabbit kitten's lung. The attenuation signal of a thorax, in particular, is dominated by the strongly attenuating bones of the ribcage. Combined with the weak soft tissue signal, this makes it difficult to visualize the fine anatomical structures across the whole lung. In all cases, clean material decomposition was achieved, without residual phase-contrast effects, from which we generate an un-obstructed image of the lung, free of bones. Spectral propagation-based phase-contrast imaging has the potential to be a valuable tool, not only in future lung research, but also in other systems for which phase-contrast imaging in combination with material decomposition proves to be advantageous.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Animais , Imagens de Fantasmas , Coelhos , Radiografia , Raios X
5.
Opt Lett ; 45(14): 4076-4079, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32667358

RESUMO

This study describes a new approach for material decomposition in x-ray imaging, utilizing phase contrast both to increase sensitivity to weakly attenuating samples and to act as a complementary measurement to attenuation, therefore allowing two overlaid materials to be separated. The measurements are captured using the single-exposure, single-grid x-ray phase contrast imaging technique, with a novel correction that aims to remove propagation-based phase effects seen at sharp edges in the attenuation image. The use of a single-exposure technique means that images can be collected in a high-speed sequence. Results are shown for both a known two-material sample and for a biological specimen.

6.
Opt Express ; 28(5): 7080-7094, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32225943

RESUMO

This work demonstrates the use of a scientific-CMOS (sCMOS) energy-integrating detector as a photon-counting detector, thereby eliminating dark current and read-out noise issues, that simultaneously provides both energy resolution and sub-pixel spatial resolution for X-ray imaging. These capabilities are obtained by analyzing visible light photon clouds that result when X-ray photons produce fluorescence from a scintillator in front of the visible light sensor. Using low-fluence monochromatic X-ray projections to avoid overlapping photon clouds, the centroid of individual X-ray photon interactions was identified. This enabled a tripling of the spatial resolution of the detector to 6.71 ± 0.04 µm. By calculating the total charge deposited by this interaction, an energy resolution of 61.2 ± 0.1% at 17 keV was obtained. When combined with propagation-based phase contrast imaging and phase retrieval, a signal-to-noise ratio of up to 15 ± 3 was achieved for an X-ray fluence of less than 3 photons/mm2.

7.
Front Pediatr ; 7: 427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31696099

RESUMO

Background: Spontaneous breathing is essential for successful non-invasive respiratory support delivered by a facemask at birth. As hypoxia is a potent inhibitor of spontaneous breathing, initiating respiratory support with a high fraction of inspired O2 may reduce the risk of hypoxia and increase respiratory effort at birth. Methods: Preterm rabbit kittens (29 days gestation, term ~32 days) were delivered and randomized to receive continuous positive airway pressure with either 21% (n = 12) or 100% O2 (n = 8) via a facemask. If apnea occurred, intermittent positive pressure ventilation (iPPV) was applied with either 21% or 100% O2 in kittens who started in 21% O2, and remained at 100% O2 for kittens who started the experiment in 100% O2. Respiratory rate (breaths per minute, bpm) and variability in inter-breath interval (%) were measured from esophageal pressure recordings and functional residual capacity (FRC) was measured from synchrotron phase-contrast X-ray images. Results: Initially, kittens receiving 21% O2 had a significantly lower respiratory rate and higher variability in inter-breath interval, indicating a less stable breathing pattern than kittens starting in 100% O2 [median (IQR) respiratory rate: 16 (4-28) vs. 38 (29-46) bpm, p = 0.001; variability in inter-breath interval: 33.3% (17.2-50.1%) vs. 27.5% (18.6-36.3%), p = 0.009]. Apnea that required iPPV, was more frequently observed in kittens in whom resuscitation was started with 21% compared to 100% O2 (11/12 vs. 1/8, p = 0.001). After recovering from apnea, respiratory rate was significantly lower and variability in inter-breath interval was significantly higher in kittens who received iPPV with 21% compared to 100% O2. FRC was not different between study groups at both timepoints. Conclusion: Initiating resuscitation with 100% O2 resulted in increased respiratory activity and stability, thereby reducing the risk of apnea and need for iPPV after birth. Further studies in human preterm infants are mandatory to confirm the benefit of this approach in terms of oxygenation. In addition, the ability to avoid hyperoxia after initiation of resuscitation with 100% oxygen, using a titration protocol based on oxygen saturation, needs to be clarified.

8.
Opt Express ; 27(10): 14231-14245, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163875

RESUMO

We present a pixel-specific, measurement-driven correction that effectively reduces errors in detector response that give rise to the ring artifacts commonly seen in X-ray computed tomography (CT) scans. This correction is easy to implement, suppresses CT artifacts significantly, and is effective enough for use with both absorption and phase contrast imaging. It can be used as a standalone correction or in conjunction with existing ring artifact removal algorithms to further improve image quality. We validate this method using two X-ray CT data sets acquired using monochromatic sources, showing post-correction signal-to-noise increases of up to 55%, and we define an image quality metric to use specifically for the assessment of ring artifact suppression.


Assuntos
Artefatos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/instrumentação , Algoritmos
9.
Sci Rep ; 8(1): 11412, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061729

RESUMO

Phase contrast X-ray imaging (PCXI) is an emerging imaging modality that has the potential to greatly improve radiography for medical imaging and materials analysis. PCXI makes it possible to visualise soft-tissue structures that are otherwise unresolved with conventional CT by rendering phase gradients in the X-ray wavefield visible. This can improve the contrast resolution of soft tissues structures, like the lungs and brain, by orders of magnitude. Phase retrieval suppresses noise, revealing weakly-attenuating soft tissue structures, however it does not remove the artefacts from the highly attenuating bone of the skull and from imperfections in the imaging system that can obscure those structures. The primary causes of these artefacts are investigated and a simple method to visualise the features they obstruct is proposed, which can easily be implemented for preclinical animal studies. We show that phase contrast X-ray CT (PCXI-CT) can resolve the soft tissues of the brain in situ without a need for contrast agents at a dose ~400 times lower than would be required by standard absorption contrast CT. We generalise a well-known phase retrieval algorithm for multiple-material samples specifically for CT, validate its use for brain CT, and demonstrate its high stability in the presence of noise.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Animais , Artefatos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA