Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1051: 82-93, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30661622

RESUMO

Various protocols are currently used to study marine lipids, but there is a growing interest in working on dry samples that are easier to transport. However, reference protocols are still lacking for dry samples. In order to make recommendations on this use, lipid classes and fatty acids (FA) obtained from six analytical protocols using two different tissue states (dry vs wet) and three extraction methods (automat vs manual potter vs leaving the solvent to work on tissue) were compared. Three dry storage modes of tissue (freezer vs gas nitrogen vs dry room) during one and three months were also compared. These comparisons were made on seven marine species with different lipid profiles, including fishes, crustaceans and mollusks. Lipid classes and FA obtained from wet and dry tissues were similar, but they were affected by the extraction methods. Regardless of tissue state, "Leave to work" methods obtained the highest lipid quantities, followed by manual potter and automat methods (ca. 90% and 80% of "Leave to work" methods, respectively). Linear relationships allowed correction for lipid classes and FA concentrations obtained from different protocols. The repeatability of all protocols still needs to be improved, especially for fish species. Increasing the replicate number for each sample might be an indirect way to improve lipid quantification. Our results show that storing dry tissues in the freezer for more than one month was associated with a decrease in lipids, which is also observed for other storage methods. For qualitative studies of FA (expressed in %), a three-month storage of dry tissue in freezer did not affect the relative composition of species/tissues with a lipid content below 20% of dry weight.


Assuntos
Organismos Aquáticos/química , Fracionamento Químico/métodos , Ácidos Graxos/análise , Ácidos Graxos/isolamento & purificação , Preservação de Tecido/métodos , Animais , Liofilização , Temperatura , Clima Tropical
2.
Harmful Algae ; 75: 75-86, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29778227

RESUMO

Vulcanodinium rugosum, a dinoflagellate developing in Ingril Lagoon (Mediterranean, France) is responsible for shellfish intoxications due to the neurotoxin pinnatoxin G. A one year survey (March 2012-April 2013) was conducted in this oligotrophic shallow lagoon and key environmental parameters were recorded (temperature, salinity and nutrients). The spatio-temporal distribution of V. rugosum in water column and on macrophytes was also determined. Planktonic cells of V. rugosum were observed at all sampling stations, but in relatively low concentrations (maximum of 1000 cell/L). The highest abundances were observed from June to September 2012. There was a positive correlation between cell densities and both temperature and salinity. Non-motile cells were detected on macrophytes, with a maximum concentration of 6300 cells/g wet weight. Nitrite and ammonium were negatively related to V. rugosum abundance whereas total nitrogen, total phosphorus and phosphates showed a positive correlation. Altogether, in situ results suggest that V. rugosum is rather thermophilic and that organic nutrients should be considered when studying the nutrition requirements for this noxious expanding dinoflagellate.


Assuntos
Dinoflagellida/fisiologia , Meio Ambiente , França , Nutrientes/análise , Densidade Demográfica , Salinidade , Estações do Ano , Análise Espaço-Temporal , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA