Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 141: 106829, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37690319

RESUMO

A straightforward synthesis of carbohydrate templated isoxazolidines is described, by reaction of unprotected glycosylhydroxylamines (operating as 1,3-dipoles) with methyl acrylate using microwave activation. Rhamno- and erythro-isoxazolidines are recognized by plant cells, resulting in a strong ROS-production as a plant immune response, and exert a high antifungal activity against Botrytis cinerea.


Assuntos
Fungicidas Industriais , Antifúngicos/farmacologia , Plantas , Glicoconjugados/farmacologia , Carboidratos
2.
J Exp Bot ; 73(9): 2765-2784, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35560208

RESUMO

Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.


Assuntos
Imunidade Vegetal , Receptores de Reconhecimento de Padrão , Biologia , Biofísica , Membrana Celular/metabolismo , Lipídeos de Membrana/metabolismo , Doenças das Plantas , Plantas/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34561304

RESUMO

Plant innate immunity is activated upon perception of invasion pattern molecules by plant cell-surface immune receptors. Several bacteria of the genera Pseudomonas and Burkholderia produce rhamnolipids (RLs) from l-rhamnose and (R)-3-hydroxyalkanoate precursors (HAAs). RL and HAA secretion is required to modulate bacterial surface motility, biofilm development, and thus successful colonization of hosts. Here, we show that the lipidic secretome from the opportunistic pathogen Pseudomonas aeruginosa, mainly comprising RLs and HAAs, stimulates Arabidopsis immunity. We demonstrate that HAAs are sensed by the bulb-type lectin receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION/S-DOMAIN-1-29 (LORE/SD1-29), which also mediates medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) perception, in the plant Arabidopsis thaliana HAA sensing induces canonical immune signaling and local resistance to plant pathogenic Pseudomonas infection. By contrast, RLs trigger an atypical immune response and resistance to Pseudomonas infection independent of LORE. Thus, the glycosyl moieties of RLs, although abolishing sensing by LORE, do not impair their ability to trigger plant defense. Moreover, our results show that the immune response triggered by RLs is affected by the sphingolipid composition of the plasma membrane. In conclusion, RLs and their precursors released by bacteria can both be perceived by plants but through distinct mechanisms.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Glicolipídeos/metabolismo , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio , Resistência à Doença/imunologia , Glicolipídeos/química , Interações Hospedeiro-Patógeno/fisiologia , Imunidade Inata , Fosforilação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
4.
Chem Sci ; 12(21): 7533-7546, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163844

RESUMO

Rhamnolipids are a specific class of microbial surfactants, which hold great biotechnological and therapeutic potential. However, their exploitation at the industrial level is hampered because they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa. The non-human pathogenic bacterium Pantoea ananatis is an alternative producer of rhamnolipid-like metabolites containing glucose instead of rhamnose residues. Herein, we present the isolation, structural characterization, and total synthesis of ananatoside A, a 15-membered macrodilactone-containing glucolipid, and ananatoside B, its open-chain congener, from organic extracts of P. ananatis. Ananatoside A was synthesized through three alternative pathways involving either an intramolecular glycosylation, a chemical macrolactonization or a direct enzymatic transformation from ananatoside B. A series of diasteroisomerically pure (1→2), (1→3), and (1→4)-macrolactonized rhamnolipids were also synthesized through intramolecular glycosylation and their anomeric configurations as well as ring conformations were solved using molecular modeling in tandem with NMR studies. We show that ananatoside B is a more potent surfactant than its macrolide counterpart. We present evidence that macrolactonization of rhamnolipids enhances their cytotoxic and hemolytic potential, pointing towards a mechanism involving the formation of pores into the lipidic cell membrane. Lastly, we demonstrate that ananatoside A and ananatoside B as well as synthetic macrolactonized rhamnolipids can be perceived by the plant immune system, and that this sensing is more pronounced for a macrolide featuring a rhamnose moiety in its native 1 C 4 conformation. Altogether our results suggest that macrolactonization of glycolipids can dramatically interfere with their surfactant properties and biological activity.

5.
Front Bioeng Biotechnol ; 8: 1014, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015005

RESUMO

Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of microorganisms including fungi and bacteria. Pseudomonas, Burkholderia, and Bacillus species are known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial applications. Recently, these compounds have been studied in a context of plant-microbe interactions. This mini-review describes the direct antimicrobial activities of these compounds against plant pathogens. We also provide the current knowledge on how rhamnolipids and lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.

6.
Mol Plant Pathol ; 20(11): 1602-1616, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31353775

RESUMO

Plants are able to effectively cope with invading pathogens by activating an immune response based on the detection of invasion patterns (IPs) originating from the pathogen or released by the plant after infection. At a first level, this perception takes place at the plasma membrane through cell surface immune receptors and although the involvement of proteinaceous pattern recognition receptors (PRRs) is well established, increasing data are also pointing out the role of membrane lipids in the sensing of IPs. In this review, we discuss the evolution of various conceptual models describing plant immunity and present an overview of well-characterized IPs from different natures and origins. We summarize the current knowledge on how they are perceived by plants at the plasma membrane, highlighting the increasingly apparent diversity of sentinel-related systems in plants.


Assuntos
Membrana Celular/metabolismo , Imunidade Vegetal , Plantas/microbiologia , Lipídeos/química , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Polissacarídeos/metabolismo
7.
Appl Environ Microbiol ; 85(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30902863

RESUMO

Members of the genus Burkholderia colonize diverse ecological niches. Among the plant-associated strains, Paraburkholderia phytofirmans PsJN is an endophyte with a broad host range. In a spatially structured environment (unshaken broth cultures), biofilm-constructing specialists of P. phytofirmans PsJN colonizing the air-liquid interface arose at high frequency. In addition to forming a robust biofilm in vitro and in planta on Arabidopsis roots, those mucoid phenotypic variants display a reduced swimming ability and modulate the expression of several microbe-associated molecular patterns (MAMPs), including exopolysaccharides (EPS), flagellin, and GroEL. Interestingly, the variants induce low PR1 and PDF1.2 expression compared to that of the parental strain, suggesting a possible evasion of plant host immunity. We further demonstrated that switching from the planktonic to the sessile form did not involve quorum-sensing genes but arose from spontaneous mutations in two genes belonging to an iron-sulfur cluster: hscA (encoding a cochaperone protein) and iscS (encoding a cysteine desulfurase). A mutational approach validated the implication of these two genes in the appearance of variants. We showed for the first time that in a heterogeneous environment, P. phytofirmans strain PsJN is able to rapidly diversify and coexpress a variant that outcompete the wild-type form in free-living and static conditions but not in plantaIMPORTANCEParaburkholderia phytofirmans strain PsJN is a well-studied plant-associated bacterium known to induce resistance against biotic and abiotic stresses. In this work, we described the spontaneous appearance of mucoid variants in PsJN from static cultures. We showed that the conversion from the wild-type (WT) form to variants (V) correlates with an overproduction of EPS, an enhanced ability to form biofilm in vitro and in planta, and a reduced swimming motility. Our results revealed also that these phenotypes are in part associated with spontaneous mutations in an iron-sulfur cluster. Overall, the data provided here allow a better understanding of the adaptive mechanisms likely developed by P. phytofirmans PsJN in a heterogeneous environment.


Assuntos
Biofilmes/crescimento & desenvolvimento , Burkholderiaceae/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Burkholderiaceae/citologia , Burkholderiaceae/genética , Burkholderiaceae/crescimento & desenvolvimento , Liases de Carbono-Enxofre , Defensinas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Mutação , Imunidade Vegetal , Raízes de Plantas/microbiologia , Percepção de Quorum/genética , Estresse Fisiológico , Sequenciamento Completo do Genoma
8.
Sci Rep ; 8(1): 8534, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867089

RESUMO

Stimulation of plant innate immunity by natural and synthetic elicitors is a promising alternative to conventional pesticides for a more sustainable agriculture. Sugar-based bolaamphiphiles are known for their biocompatibility, biodegradability and low toxicity. In this work, we show that Synthetic Rhamnolipid Bolaforms (SRBs) that have been synthesized by green chemistry trigger Arabidopsis innate immunity. Using structure-function analysis, we demonstrate that SRBs, depending on the acyl chain length, differentially activate early and late immunity-related plant defense responses and provide local increase in resistance to plant pathogenic bacteria. Our biophysical data suggest that SRBs can interact with plant biomimetic plasma membrane and open the possibility of a lipid driven process for plant-triggered immunity by SRBs.


Assuntos
Arabidopsis/imunologia , Glicolipídeos , Membranas Artificiais , Imunidade Vegetal/efeitos dos fármacos , Glicolipídeos/síntese química , Glicolipídeos/química , Glicolipídeos/farmacologia , Química Verde , Relação Estrutura-Atividade
9.
Photosynth Res ; 134(2): 201-214, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28840464

RESUMO

Pathogen infection of plant results in modification of photosynthesis and defense mechanisms. Beneficial microorganisms are known to improve plant tolerance to stresses. Burkholderia phytofirmans PsJN (Bp), a beneficial endophytic bacterium, promotes growth of a wide range of plants and induces plant resistance against abiotic and biotic stresses such as coldness and infection by a necrotrophic pathogen. However, mechanisms underlying its role in plant tolerance towards (hemi)biotrophic invaders is still lacking. We thus decipher photosynthetic and defense responses during the interaction between Arabidopsis, Bp and the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 (Pst). Different Bp inoculations allowed analyzes at both systemic and local levels. Despite no direct antibacterial action, our results showed that only local presence of Bp alleviates Pst growth in planta during the early stage of infection. Molecular investigations showed that seed inoculation of Bp, leading to a restricted presence in the root system, transiently primed PR1 expression after challenge with Pst but continuously primed PDF1.2 expression. Bacterization with Bp reduced Y(ND) but had no impact on PSII activity or RuBisCO accumulation. Pst infection caused an increase of Y(NA) and a decrease in ΦPSI, ETRI and in PSII activity, showed by a decrease in Fv/Fm, Y(NPQ), ΦPSII, and ETRII values. Inoculation with both bacteria did not display any variation in photosynthetic activity compared to plants inoculated with only Pst. Our findings indicated that the role of Bp here is not multifaceted, and relies only on priming of defense mechanisms but not on improving photosynthetic activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Burkholderia/fisiologia , Regulação da Expressão Gênica de Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae , Arabidopsis/microbiologia , Resistência à Doença , Fotossíntese , Complexo de Proteína do Fotossistema II , Raízes de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase , Simbiose
11.
Molecules ; 19(11): 18033-56, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25379642

RESUMO

Phytoalexins are low molecular weight antimicrobial compounds that are produced by plants as a response to biotic and abiotic stresses. As such they take part in an intricate defense system which enables plants to control invading microorganisms. In this review we present the key features of this diverse group of molecules, namely their chemical structures, biosynthesis, regulatory mechanisms, biological activities, metabolism and molecular engineering.


Assuntos
Anti-Infecciosos/metabolismo , Imunidade Vegetal/fisiologia , Plantas/metabolismo , Plantas/microbiologia , Sesquiterpenos/metabolismo , Estresse Fisiológico/fisiologia , Humanos , Fitoalexinas
12.
Plant Mol Biol ; 82(1-2): 181-92, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23564360

RESUMO

ATP-binding cassette transporters are involved in the active transport of a wide variety of metabolites in prokaryotes and eukaryotes. One subfamily, the Pleiotropic Drug Resistance (PDR) transporters, or full-size ABCG transporters, are found only in fungi and plants. NtPDR1 was originally identified in Nicotiana tabacum suspension cells (BY2), in which its expression was induced by microbial elicitors. To obtain information on its expression in plants, we generated NtPDR1-specific antibodies and, using Western blotting, found that this transporter is localized in roots, leaves, and flowers and this was confirmed in transgenic plants expressing the ß-glucuronidase reporter gene fused to the NtPDR1 promoter region. Expression was seen in the lateral roots and in the long glandular trichomes of the leaves, stem, and flowers. Western blot analysis and in situ immunolocalization showed NtPDR1 to be localized in the plasma membrane. Induction of NtPDR1 expression by various compounds was tested in N. tabacum BY2 cells. Induction of expression was observed with the hormones methyl jasmonate and naphthalene acetic acid and diterpenes. Constitutive ectopic expression of NtPDR1 in N. tabacum BY2 cells resulted in increased resistance to several diterpenes. Transport tests directly demonstrated the ability of NtPDR1 to transport diterpenes. These data suggest that NtPDR1 is involved in plant defense through diterpene transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Diterpenos/metabolismo , Nicotiana/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Membrana Celular/efeitos dos fármacos , Diterpenos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética
13.
Transgenic Res ; 20(4): 799-810, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21052831

RESUMO

Transcription promoters of heat shock protein (HSP) genes have been used to control the expression of heterologous proteins in plants and plant cells. To obtain a strong HSP promoter that is functionally active in Nicotiana tabacum BY-2 cells, we set out to identify a promoter of an endogenous gene showing high activation of expression by heat. An N. tabacum BY-2 cell culture was treated for 8 h at 37°C and the cell protein extract analyzed by two-dimensional electrophoresis. A major spot was identified by mass spectrometry as belonging to the small HSP family. The promoter regions and the 5' and 3' untranslated regions of two genes, NtHSP3A and NtHSP3B, with sequences fitting the protein identified were cloned and fused to a hybrid reporter gene coding for ß-glucuronidase (GUS) and a yellow fluorescent protein. These constructs were introduced into N. tabacum BY2 cells by Agrobacterium tumefaciens-mediated transformation. Both promoters conferred similar heat-induced GUS expression. In the best heat shock condition, GUS activity was increased 200 fold and reached 285 pmol min(-1) µg protein(-1). Up-scaling in a 4-l bioreactor resulted in similar heat-induced expression. The NtHSP3A promoter was then used to drive the expression of NtPDR1, a plasma membrane transporter belonging to the pleiotropic drug resistance family. No expression was observed at 25°C, while, at 37°C, expression was similar to that obtained using a strong constitutive promoter. These data show that the HSP promoters isolated are useful for high heat-induced expression in N. tabacum BY-2 cells.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Temperatura Alta , Nicotiana/genética , Regiões Promotoras Genéticas , Sequência de Aminoácidos , Sequência de Bases , Biotecnologia , Técnicas de Cultura de Células , Genes Reporter , Glucuronidase/genética , Dados de Sequência Molecular , Transcrição Gênica
14.
Mol Biol Rep ; 38(5): 3327-37, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21104020

RESUMO

F-box proteins are key components of the ubiquitin (Ub)/26S proteasome pathway that mediates selective degradation of regulatory proteins involved in a wide variety of cellular processes affecting eukaryotic cells. In plants, F-box genes form one of the largest multigene superfamilies and control many important biological functions. Among the F-box genes characterized to date only few have been involved in the regulation of plant defense responses. Moreover, no F-box genes have been studied and characterized in grapevine. Using a differential display approach we isolated a F-box gene (BIG-24.1), which is up-regulated during Botrytis cinerea infection of grapevine leaves. BIG-24.1 encodes a polypeptide of 386 amino acids with a conserved F-box domain in the N-terminus region and a kelch domain. By investigating expression profiles of BIG-24.1, we show that the gene expression is strongly stimulated in B. cinerea infected berries and in grapevine cells challenged by MAMP rhamnolipids, a non-host bacterium and an endophytic rhizobacterium. The gene is also strongly induced by abiotic stresses including UV-C and wounding or by salicylic acid, methyl-jasmonate, ethylene and abscisic acid that are known to be involved in defense signalling pathways. In addition, sequence analysis of the BIG-24.1 promoter revealed the presence of several regulatory elements involved in the activation of plant defense responses.


Assuntos
Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Estresse Fisiológico , Vitis/genética , Sequência de Aminoácidos , Botrytis/metabolismo , Botrytis/patogenicidade , Proteínas F-Box/metabolismo , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Análise de Sequência de DNA , Regulação para Cima/efeitos dos fármacos , Vitis/anatomia & histologia , Vitis/metabolismo , Vitis/microbiologia
15.
Plant Physiol ; 149(2): 894-904, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19036834

RESUMO

The Arabidopsis (Arabidopsis thaliana) Heavy Metal Associated3 (AtHMA3) protein belongs to the P1B-2 subgroup of the P-type ATPase family, which is involved in heavy metal transport. In a previous study, we have shown, using heterologous expression in the yeast Saccharomyces cerevisiae, that in the presence of toxic metals, AtHMA3 was able to phenotypically complement the cadmium/lead (Cd/Pb)-hypersensitive strain ycf1 but not the zinc (Zn)-hypersensitive strain zrc1. In this study, we demonstrate that AtHMA3 in planta is located in the vacuolar membrane, with a high expression level in guard cells, hydathodes, vascular tissues, and the root apex. Confocal imaging in the presence of the Zn/Cd fluorescent probe BTC-5N revealed that AtHMA3 participates in the vacuolar storage of Cd. A T-DNA insertional mutant was found more sensitive to Zn and Cd. Conversely, ectopic overexpression of AtHMA3 improved plant tolerance to Cd, cobalt, Pb, and Zn; Cd accumulation increased by about 2- to 3-fold in plants overexpressing AtHMA3 compared with wild-type plants. Thus, AtHMA3 likely plays a role in the detoxification of biological (Zn) and nonbiological (Cd, cobalt, and Pb) heavy metals by participating in their vacuolar sequestration, an original function for a P1B-2 ATPase in a multicellular eukaryote.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Metais Pesados/toxicidade , Vacúolos/enzimologia , Adenosina Trifosfatases/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cádmio/metabolismo , Cádmio/toxicidade , Cobre/metabolismo , Cobre/toxicidade , DNA de Plantas/genética , Tolerância a Medicamentos , Inativação Metabólica , Chumbo/metabolismo , Chumbo/toxicidade , Metais Pesados/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Vacúolos/efeitos dos fármacos , Zinco/metabolismo , Zinco/toxicidade
16.
Plant Cell Environ ; 31(6): 715-26, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18208513

RESUMO

Plants respond to environmental mechanical stimulation, such as wind, by modifying their growth and development. To study the molecular effects of stem bending on 3-week-old walnut trees, a cDNA-AFLP approach was developed. This study allowed the identification of a cDNA, known as Jr-ZFP2, encoding a Cys2/His2-type two-zinc-fingered transcription factor. Reverse transcriptase-polymerase chain reaction analysis confirmed that Jr-ZFP2 mRNA accumulation is rapidly and transiently induced after mechanical stimulation. After bending, Jr-ZFP2 transcript increase was restricted to the stem, the organ where the mechanical solicitation was applied. Furthermore, other abiotic factors, such as cold or salt, did not modify Jr-ZFP2 mRNA accumulation in walnut stems under our experimental conditions, whereas growth studies demonstrated that salt stress was actually perceived by the plants. These results suggest that the regulation of Jr-ZFP2 expression is more sensitive to mechanical stimulus. This gene will be a good marker for studying the early stages of mechanical perception in woody plants.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Juglans/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Fenômenos Biomecânicos , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Juglans/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Caules de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tempo
17.
Plant Mol Biol ; 66(1-2): 165-75, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18034327

RESUMO

ATP-binding cassette transporters of the pleiotropic drug resistance (PDR) subfamily are composed of five clusters. We have cloned a gene, NpPDR2, belonging to the still uncharacterized cluster IV from Nicotiana plumbaginifolia. NpPDR2 transcripts were found in the roots and mature flowers. In the latter, NpPDR2 expression was restricted to the style and only after pollination. A 1.5-kb genomic sequence containing the putative NpPDR2 transcription promoter was fused to the beta-glucuronidase reporter gene. The GUS expression pattern confirmed the RT-PCR results that NpPDR2 was expressed in roots and the flower style and showed that it was localized around the conductive tissues. Unlike other PDR genes, NpPDR2 expression was not induced in leaf tissues by none of the hormones typically involved in biotic and abiotic stress response. Moreover, unlike NpPDR1 known to be involved in biotic stress response, NpPDR2 expression was not induced in the style upon Botrytis cinerea infection. In N. plumbaginifolia plants in which NpPDR2 expression was prevented by RNA interference, no unusual phenotype was observed, including at the flowering stage, which suggests that NpPDR2 is not essential in the reproductive process under the tested conditions.


Assuntos
Resistência a Medicamentos/genética , Genes de Plantas , Nicotiana/genética , Sequência de Bases , Primers do DNA , DNA Complementar , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
FEBS Lett ; 580(4): 1123-30, 2006 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-16506311

RESUMO

Among the ABC transporters, the pleiotropic drug resistance (PDR) family is particular in that its members are found only in fungi and plants and have a reverse domain organization, i.e., the nucleotide binding domain precedes the transmembrane domain. In Arabidopsis and rice, for which the full genome has been sequenced, the family of plant ABC transporters contains 15 and 23 PDR genes, respectively, which can be tentatively organized using the sequence data into five subfamilies. Most of the plant PDR genes so far characterized belong to subfamily I and have been shown to be involved in responses to abiotic and biotic stress, in the latter case, probably by transporting antimicrobial secondary metabolites to the cell surface. Only a single subfamily II member has been characterized. Induction of its expression by iron deficiency suggests its involvement in iron deficiency stress, thus, enlightening a new physiological role for a PDR gene.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Plantas/metabolismo , Filogenia , Frações Subcelulares/metabolismo
19.
Plant Mol Biol ; 58(6): 775-787, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16240173

RESUMO

In Nicotiana plumbaginifolia, plasma membrane H(+)-ATPases (PMAs) are encoded by a gene family of nine members. Here, we report on the characterization of a new isogene, NpPMA5 (belonging to subfamily IV), and the determination of its expression pattern using the beta-glucuronidase (gusA) reporter gene. pNpPMA5-gusA was expressed in cotyledons, in vascular tissues of the stem (mainly in nodal zones), and in the flower and fruit. In the flower, high expression was found in the pollen tube after in vitro or in vivo germination. Northern blotting analysis confirmed that NpPMA5 was expressed in the pollen tube contrary to NpPMA2 (subfamily I) or NpPMA4 (subfamily II), two genes highly expressed in other tissues. The subcellular localization of PM H(+)-ATPase in the pollen tube was analyzed by immunocytodecoration. As expected, this enzyme was localized to the plasma membrane. However, neither the tip nor the base of the pollen tube was labeled, showing an asymmetrical distribution of this enzyme. This observation supports the hypothesis that the PM H(+)-ATPase is involved in creating the pH gradient that is observed along the pollen tube and is implicated in cell elongation. Compared to other plant PM H(+)-ATPases, the C-terminal region of NpPMA5 is shorter by 26 amino acid residues and is modified in the last 6 residues, due to a sequence rearrangement, which was also found in the orthologous gene of Nicotiana glutinosa, a Nicotiana species distant from N. plumbaginifolia and Petunia hybrida and Lycopersicon esculentum, other Solanacae species. This modification alters part of the PM H(+)-ATPase regulatory domain and raises the question whether this isoform is still regulated.


Assuntos
Membrana Celular/enzimologia , Flores/citologia , Flores/enzimologia , Regulação da Expressão Gênica de Plantas , Nicotiana/citologia , Nicotiana/enzimologia , ATPases Translocadoras de Prótons/genética , Sequência de Bases , Flores/genética , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , ATPases Translocadoras de Prótons/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA