Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 26036-26051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491242

RESUMO

Bunodosoma zamponii is the most abundant anemone in Mar del Plata (Buenos Aires, Argentina). Given that the presence of persistent organic pollutants (organochlorine pesticides and PCBs) and the organophosphate pesticide chlorpyrifos has recently been reported in this species, two wild populations living under different anthropogenic pressures were studied and compared regarding basic aspects of their ecology and physiological response to oxidative stress. A population from an impacted site (Las Delicias, LD) and another from a reference site (Punta Cantera, PC) were monitored seasonally (spring, summer, autumn, and winter), for one year. Anemones from PC were larger and more abundant than those from LD for most sampling periods. During winter, glutathione-S-transferase and catalase activities were higher in LD. Moreover, protein content and antioxidant defenses were higher in anemones from PC during winter as well. Taking into account their ecology (size and abundance) and biomarker responses, the population from PC was comparatively healthier. Furthermore, such differences are in agreement with recent studies indicating a higher concentration of pollutants in anemones from LD (specially during the winter sampling). In this sense, considering that B. zamponii can bioaccumulate the aforementioned pollutants, its resilience to their presence, and the fact that biomarker response differed between sites, this species can be regarded as a proper sentinel species of environmental pollution. Overall, this anemone seems to be a good bioindicator to be considered in future biomonitoring and ecotoxicological studies.


Assuntos
Poluentes Ambientais , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/metabolismo , Efeitos Antropogênicos , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Monitoramento Ambiental
2.
Bull Environ Contam Toxicol ; 111(3): 41, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710082

RESUMO

Dicamba (DIC) is one of the most applied auxin herbicides worldwide. Sublethal effects in the South American native fish Jenynsia lineata exposed to DIC concentrations close to environmental concentrations (0.03-30 µg/L) during 48 h were analysed thorough the evaluation of catalase (CAT), glutathione S-transferase (GST), superoxide dismutase (SOD) activities and malondialdehyde (MDA) and H2O2 levels for detecting potential oxidative stress. In gills MDA increased showing oxidative damage probably because of an inefficient antioxidant defense. This response evidenced the important role of gills as an organ of direct contact with waterborne contaminants. In addition, other changes in the biomarkers of oxidative stress were observed such as the inhibition of SOD activities in brain and the inhibition of GST in liver. These results show that short- term exposures to environmentally relevant concentrations of DIC could induce sublethal effects in native fish.


Assuntos
Dicamba , Peixes , Herbicidas , Estresse Oxidativo , Animais , Dicamba/toxicidade , Glutationa Transferase , Herbicidas/toxicidade , Peróxido de Hidrogênio , América do Sul , Superóxido Dismutase
3.
Ecotoxicol Environ Saf ; 207: 111286, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931973

RESUMO

Azoxystrobin (AZX) is a broad-spectrum systemic fungicide massively used worldwide. Its mode of action consists in the inhibition of mitochondrial respiration decreasing the synthesis of ATP and leading to oxidative stress in the target fungus. However, whether this effect occurs in non target organisms has been scarcely studied. The objectives of this work were (1) to evaluate biomarkers of oxidative stress, hematological, physiological and of genotoxicity in the native cichlid fish Australoheros facetus exposed to environmentally relevant concentrations of AZX and (2) to compare these biomarkers in different developmental stages using juvenile and adult fish (n = 6) exposed during 48 h. The exposure concentrations were 0 (negative control, C (-)), 0.05, 0.5, 5 and 50 µg/L AZX of the commercial formulation AMISTAR®. Blood was drawn to evaluate hematology, and DNA damage through the comet assay (CA) and micronucleus test (MN). Genotoxicity was observed by mean of both biomarkers in juvenile and adult fish at 50 µg/L AZX. Samples of liver and gills were used to determine antioxidant enzymes activity, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. In juvenile fish inhibition of superoxide dismutase (SOD) was observed in liver at 0.05, 5 and 50 µg/L AZX and in gills at 5 and 50 µg/L AZX. Glutathione- S- transferases (GST) activity increased in gills at all AZX concentrations tested. In adult fish, increase of hepatic catalase (CAT) activity at 0.5 and 50 µg/L AZX and MDA content at 50 µg/L AZX were observed. In gills only H2O2 content showed changes at 50 µg/L AZX. The sensitivity showed by gills constitutes the first report about AZX toxicity in this organ. All these negative effects were observed in the range of realistic AZX concentrations, which warns of the possible consequences that it may have on the health of aquatic biota. Differences between juvenile and adult fish demonstrate the relevance of considering the developmental stage on the evaluation of biomarkers.


Assuntos
Ciclídeos/sangue , Dano ao DNA , Fungicidas Industriais/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/sangue , Catalase/metabolismo , Ciclídeos/genética , Ensaio Cometa , Fungicidas Industriais/análise , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Hematologia , Peróxido de Hidrogênio/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pirimidinas/análise , Estrobilurinas/análise , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 158: 44-49, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29656163

RESUMO

Endosulfan (ES) modifies the ultrastructure of skeletal muscle fibers and causes changes to the swimming behavior of fish. The objectives of the present work were to evaluate, in fishes of Australoheros facetus, 1) the integrity of myofibrils (Mf) by the analysis of SDS-PAGE profiles, and 2) the functionality of Mf through the microscopically monitoring of the contraction and changes in Mg2+ Ca2+- ATPase and Mg2+(EGTA) -ATPase activities. As expected, after the addition of the contraction buffer, control fish Mf contracted. On the contrary, Mf from fish exposed at 0.5 µg/L ES showed a partial contraction and none of the fish exposed at 10 µg/L ES contracted. As judged by its high Mg2+ Ca2+ ATPase activity and low Mg2+ (EGTA) ATPase activity, control Mf showed good functionality. In Mf from fish exposed to 0.5 and 10 µg/L ES the activities of these enzymes were similar, suggesting denaturation or degradation of some component of tropomyosin-troponin complex. SDS-PAGE patterns of Mf from fish exposed to ES showed degradation of the myosin heavy chain and of tropomyosin. Similar values of lipid peroxidation (TBARS) were found in both control and exposed Mf, suggesting that lipid oxidation was not be related to the above-mentioned changes. The observed effects expand the knowledge of ES action in muscles and could be used as biomarkers of damage in fishes exposed to organochlorine compounds like the insecticide endosulfan.


Assuntos
Endossulfano/toxicidade , Biomarcadores Ambientais , Peixes/fisiologia , Hidrocarbonetos Clorados/toxicidade , Locomoção/efeitos dos fármacos , Músculos/efeitos dos fármacos , Praguicidas/toxicidade , Animais , Biomarcadores/metabolismo , Peixes/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/fisiologia , Músculos/metabolismo , Músculos/fisiologia , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Tropomiosina/metabolismo , Troponina/metabolismo
5.
Environ Toxicol Chem ; 36(3): 699-708, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27490959

RESUMO

The neonicotinoid imidacloprid is under re-evaluation by regulatory agencies because of the poor current information available regarding its potential effects. One of the goals of the present study was to determine imidacloprid uptake and distribution in the freshwater fish Australoheros facetus experimentally exposed for 24 h and 48 h to 100 µg/L, 300 µg/L, and 2500 µg/L. The toxicity of imidacloprid to fish reported in the literature is in the milligrams per liter or gram per liter range, but sublethal effects at micrograms per liter in some groups other than fish have been described. Another goal of the present study was to evaluate imidacloprid's potential genotoxicity and to compare it between the individual compound and a commercial formulation. Concentrations of imidacloprid were measured in water, brain, muscle, gills, gut, liver, and blood by liquid chromatography-tandem mass spectrometry. Imidacloprid was detected in all the tissues tested. Concentrations were higher after 48 h than after 24 h in liver, gills, gut, and muscle, whereas in brain and blood they were similar at both exposure times. Although there was no accumulation, only uptake, of imidacloprid, genotoxicity was observed. In fish exposed to IMIDA NOVA 35® , increased micronucleus frequency at 100 µg/L and 1000 µg/L was detected, whereas in the imidacloprid active ingredient bioassay it increased only at 1000 µg/L imidacloprid. The present findings warn of the possible consequences that fish living in freshwater ecosystems can suffer. Environ Toxicol Chem 2017;36:699-708. © 2016 SETAC.


Assuntos
Ciclídeos/metabolismo , Dano ao DNA , Água Doce/química , Imidazóis/toxicidade , Mutagênicos/toxicidade , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ciclídeos/genética , Relação Dose-Resposta a Droga , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Imidazóis/metabolismo , Mutagênicos/metabolismo , Neonicotinoides , Nitrocompostos/metabolismo , Especificidade de Órgãos , Distribuição Tecidual , Poluentes Químicos da Água/metabolismo
6.
J Physiol Biochem ; 67(1): 43-52, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20878513

RESUMO

The effect of frequent protein malnutrition on liver function has not been intensively examined. Thus, the effects of alternating 5 days of a protein and amino acid-free diet followed by 5 days of a complete diet repeated three times (3 PFD-CD) on female mouse liver were examined. The expression of carbonic anhydrase III (CAIII), fatty acid synthase (FAS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutathione S-transferase P1 (GSTP1) in liver were assessed by proteomics, reverse transcriptase-polymerase chain reaction and Northern blotting. The activities of liver GSTs, glutathione reductase (GR) and catalase (CAT), as well as serum glutamic-oxaloacetic transaminase (SGOT) and glutamic-pyruvic transaminase (SGPT) were also tested. Additionally, oxidative damage was examined by measuring of protein carbonylation and lipid peroxidation. Liver histology was examined by light and electron microscopy. Compared with control mice, 3 PFD-CD increased the content of FAS protein (+90%) and FAS mRNA (+30%), while the levels of CAIII and CAIII mRNAs were decreased (-48% and -64%, respectively). In addition, 3 PFD-CD did not significantly change the content of GSTP1 but produced an increase in its mRNA level (+20%), while it decreased the activities of both CAT (-66%) and GSTs (-26%). After 3 PFD-CD, liver protein carbonylation and lipid peroxidation were increased by +55% and +95%, respectively. In serum, 3 PFD-CD increased the activities of both SGOT (+30%) and SGPT (+61%). In addition, 3 PFD-CD showed a histological pattern characteristic of hepatic damage. All together, these data suggest that frequent dietary amino acid deprivation causes hepatic metabolic and ultrastructural changes in a fashion similar to precancerous or cancerous conditions.


Assuntos
Proteínas Alimentares/administração & dosagem , Fígado/metabolismo , Fígado/patologia , Desnutrição/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Alanina Transaminase/sangue , Alanina Transaminase/efeitos dos fármacos , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Anidrase Carbônica III/efeitos dos fármacos , Anidrase Carbônica III/metabolismo , Catalase/efeitos dos fármacos , Catalase/metabolismo , Ácido Graxo Sintases/efeitos dos fármacos , Ácido Graxo Sintases/metabolismo , Feminino , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Redutase/efeitos dos fármacos , Glutationa Redutase/metabolismo , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/metabolismo , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/efeitos dos fármacos , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/metabolismo , Peroxidação de Lipídeos , Fígado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Carbonilação Proteica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA