Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 5(1): 9, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438697

RESUMO

INTRODUCTION: Standardization of mesenchymal stromal cells (MSCs) manufacturing is urgently needed to enable translational activities and ultimately facilitate comparison of clinical trial results. In this work we describe the adaptation of a proprietary method for isolation of a specific umbilical cord tissue-derived population of MSCs, herein designated by its registered trademark as UCX®, towards the production of an advanced therapy medicinal product (ATMP). METHODS: The adaptation focused on different stages of production, from cell isolation steps to cell culturing and cryopreservation. The origin and quality of materials and reagents were considered and steps for avoiding microbiological and endotoxin contamination of the final cell product were implemented. Cell isolation efficiency, MSCs surface markers and genetic profiles, originating from the use of different medium supplements, were compared. The ATMP-compliant UCX® product was also cryopreserved avoiding the use of dimethyl sulfoxide, an added benefit for the use of these cells as an ATMP. Cells were analyzed for expansion capacity and longevity. The final cell product was further characterized by flow cytometry, differentiation potential, and tested for contaminants at various passages. Finally, genetic stability and immune properties were also analyzed. RESULTS: The isolation efficiency of UCX® was not affected by the introduction of clinical grade enzymes. Furthermore, isolation efficiencies and phenotype analyses revealed advantages in the use of human serum in cell culture as opposed to human platelet lysate. Initial decontamination of the tissue followed by the use of mycoplasma- and endotoxin-free materials and reagents in cell isolation and subsequent culture, enabled the removal of antibiotics during cell expansion. UCX®-ATMP maintained a significant expansion potential of 2.5 population doublings per week up to passage 15 (P15). They were also efficiently cryopreserved in a DMSO-free cryoprotectant medium with approximately 100% recovery and 98% viability post-thaw. Additionally, UCX®-ATMP were genetically stable upon expansion (up to P15) and maintained their immunomodulatory properties. CONCLUSIONS: We have successfully adapted a method to consistently isolate, expand and cryopreserve a well-characterized population of human umbilical cord tissue-derived MSCs (UCX®), in order to obtain a cell product that is compliant with cell therapy. Here, we present quality and safety data that support the use of the UCX® as an ATMP, according to existing international guidelines.


Assuntos
Criopreservação/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Pesquisa com Células-Tronco , Coleta de Tecidos e Órgãos/métodos , Cordão Umbilical/citologia , Células Cultivadas , Criopreservação/normas , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/normas , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Controle de Qualidade , Coleta de Tecidos e Órgãos/efeitos adversos , Coleta de Tecidos e Órgãos/normas
2.
J Gene Med ; 11(8): 670-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19507176

RESUMO

BACKGROUND: The low stability of gammaretroviral and lentiviral vectors affects their production, making high quality clinical preparations a difficult goal to achieve. Recently, our laboratory has shown that the main inactivation mechanism for both these vectors is the loss of their capacity to perform reverse transcription. The present study aimed to increase the stability of gammaretroviral and lentiviral at 37 degrees C and at 4 degrees C. METHODS: Inactivation studies were performed with gammaretroviral and lentiviral vectors at 37 and 4 degrees C, with and without several stabilizing compounds. The residual viral infectivity and reverse transcription capacity of these samples were tested. RESULTS: The results obtained demonstrate that it is possible to increase the stability of reverse transcription and the infectivity stability of purified gammaretroviral vectors by adding recombinant human albumin (rHSA) to the storage buffer, both at 37 degrees C and at 4 degrees C. For lentiviral vectors, it was observed that further protection was needed. This was achieved by adding lipids to the storage buffer, using a mixture of lipoproteins and rHSA. The difference of stabilization between gammaretroviral and lentiviral vectors was validated by performing stabilization tests with vectors possessing different envelope proteins and produced by different cell lines. CONCLUSIONS: The presented study reveals that it is possible to increase the half-life of purified gammaretroviral and lentiviral vectors at 37 degrees C and at 4 degrees C, but the two vectors have different stabilization requirements: for retroviral vectors, the addition of rHSA is enough and, for lentiviral vectors, it is necessary to add both lipoproteins and rHSA. The increase of the stability of the reverse transcription process was shown to have a high impact with respect to the increase of the stability of infectivity.


Assuntos
Gammaretrovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Lentivirus/genética , Linhagem Celular , Humanos , Transcrição Reversa , Proteínas do Envelope Viral/metabolismo , Inativação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA