Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell Transplant ; 32: 9636897231177357, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37291807

RESUMO

Obesity has been linked to cognitive impairment through systemic low-grade inflammation. High fat and sugar diets (HFSDs) also induce systemic inflammation, either by induced Toll-like receptor 4 response, or by causing dysbiosis. This study aimed to evaluate the effect of symbiotics supplementation on spatial and working memory, butyrate concentration, neurogenesis, and electrophysiological recovery of HFSD-fed rats. In a first experiment, Sprague-Dawley male rats were given HFSD for 10 weeks, after which they were randomized into 2 groups (n = 10 per group): water (control), or Enterococcus faecium + inulin (symbiotic) administration, for 5 weeks. In the fifth week, spatial and working memory was analyzed through the Morris Water Maze (MWM) and Eight-Arm Radial Maze (RAM) tests, respectively, with 1 week apart between tests. At the end of the study, butyrate levels from feces and neurogenesis at hippocampus were determined. In a second experiment with similar characteristics, the hippocampus was extracted to perform electrophysiological studies. Symbiotic-supplemented rats showed a significantly better memory, butyrate concentrations, and neurogenesis. This group also presented an increased firing frequency in hippocampal neurons [and a larger N-methyl-d-aspartate (NMDA)/α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) current ratio] suggesting an increase in NMDA receptors, which in turn is associated with an enhancement in long-term potentiation and synaptic plasticity. Therefore, our results suggest that symbiotics could restore obesity-related memory impairment and promote synaptic plasticity.


Assuntos
Agave , Memória Espacial , Ratos , Animais , Masculino , Agave/metabolismo , Inulina/farmacologia , Inulina/uso terapêutico , Ratos Sprague-Dawley , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Aprendizagem em Labirinto/fisiologia , Obesidade/terapia , Suplementos Nutricionais , Inflamação
2.
J Mol Histol ; 53(2): 347-356, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217964

RESUMO

Ovarian functions decrease with perimenopause. The ovary has extrinsic innervation, but the neural influence on ovarian functions and dysfunction is not well-studied. The present study aimed to biochemically and morphometrically characterize the intrinsic neurons in ovaries from young adult, middle-aged, and senescent Long Evans CII-ZV rats (3, 12, and 15 months old, respectively). Ovaries were extracted from four rats of each age group (n = 12 total), cryopreserved, and processed for immunofluorescence studies with the primary NeuN/ß-tubulin and NeuN/tyrosine hydroxylase (TH) antibodies. The soma area and number of intrinsic neurons in the ovarian stroma, surrounding follicles, corpus luteum, or cyst were evaluated. The intrinsic neurons were grouped in cluster-like shapes in ovarian structures. In senescent rats, the intrinsic neurons were mainly localized in the ovarian stroma and around the cysts. The number of neurons was lower in senescent rats than in young adult rats (p < 0.05), but the soma size was larger than in young adult rats. Immunoreactivity to TH indicated the presence of noradrenergic neurons in the ovary with the same characteristics as NeuN/ß-tubulin, which indicates that they are part of the same neuronal group. Taken together, the findings indicate that the intrinsic neurons may be related to the loss of ovarian functions associated with aging.


Assuntos
Ovário , Tubulina (Proteína) , Envelhecimento , Animais , Feminino , Ratos , Ratos Long-Evans , Tirosina 3-Mono-Oxigenase
3.
Sci Rep ; 11(1): 21591, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732833

RESUMO

The aims of the study were to determine the time-course of urinary incontinence recovery after vaginal distension (VD), elucidate the mechanisms of injury from VD leading to external urethral sphincter (EUS) dysfunction, and assess if transcutaneous electrical stimulation (TENS) of the dorsal nerve of the clitoris facilitates recovery of urinary continence after VD. Rats underwent 4-h VD, 4-h sham VD (SH-VD), VD plus 1-h DNC TENS, and VD plus 1-h sham TENS (SH-TENS). TENS or SH-TENS were applied immediately and at days 2 and 4 post-VD. Micturition behavior, urethral histochemistry and histology, EUS and nerve electrophysiology, and cystometrograms were evaluated. VD induced urine leakage and significantly disrupted EUS fibers and nerve-conduction (VD vs SH-VD group; p < 0.01). Urine leakage disappeared 13 days post-VD (p < 0.001). Structural and functional recovery of EUS neuromuscular circuitry started by day 6 post-VD, but did not fully recover by day 11 post-VD (p > 0.05). TENS significantly decreased the frequency of urine leakage post-VD (days 5-7; p < 0.01). We conclude that rat urinary continence after VD requires 2 weeks to recover, although urethra structure is not fully recovered. TENS facilitated urinary continence recovery after VD. Additional studies are necessary to assess if TENS could be used in postpartum women.


Assuntos
Parto , Estimulação Elétrica Nervosa Transcutânea/métodos , Uretra/patologia , Incontinência Urinária/terapia , Animais , Eletromiografia , Eletrofisiologia , Feminino , Compressão Nervosa , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Incontinência Urinária por Estresse/fisiopatologia , Micção , Vagina/patologia
4.
Neurourol Urodyn ; 40(8): 1880-1888, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34420224

RESUMO

AIMS: To map sensory and pelvic postganglionic neurons from three different regions of the female rat urethra. METHODS: The neuronal tracer True Blue (TB) was injected into the pre-pelvic, pelvic, and clitoral regions of the urethra from female Wistar rats. Seven days after TB injection, TB+ cells from the dorsal root ganglia (DRGs) and the major pelvic ganglion (MPG) were examined. The number and morphometry of TB+ cells were determined. RESULTS: TB+ cells were mainly distributed in lumbar 1 (L1), lumbar 2 (L2), lumbar 6 (L6), and sacral 1 (S1) DRGs, and in the MPG. The mean number of sensory neurons was 1200 ± 143. TB injection in pre-pelvic and pelvic urethra labeled neurons in L1, L2, L6, and S1 DRGs. TB injection in clitoral urethra labeled neurons in L6 and S1 DRGs. L6 DRG contained >50% of the total urethral TB+ neurons, and ~80% of the clitoral region. The mean value of the total number of MPG TB+ neurons was 1217 ± 72. DRG and MPG neurons projecting to the urethra presented a somatotopic distribution. CONCLUSIONS: The results demonstrated that L6 DRG is the major supplier of afferent innervation to the urethra, and that the distal urethral region is exclusively innervated by lower lumbosacral DRGs. Considering that electrical stimulation of sensory pudendal nerve improves overactive bladder, and that most of the sensory neurons in the distal urethra are from L6 DRG, electrical stimulation of this ganglion may be an innovative and effective neuromodulation therapy for neurogenic urinary dysfunctions.


Assuntos
Uretra , Bexiga Urinária , Animais , Feminino , Gânglios Espinais , Masculino , Neurônios , Neurônios Aferentes , Ratos , Ratos Wistar
5.
Int Neurourol J ; 24(3): 258-269, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33017896

RESUMO

PURPOSE: This study was conducted to evaluate the hypothesis that an enlarged prostate in old rats may lead to complications associated with voiding dysfunction involving ionotropic P2X2/3-type purinergic receptors. METHODS: Intact animals were divided into male young (MYR; 8-10 weeks old) and male old (MOR; 20 months old) rats. The animals underwent simultaneous detrusor electromyography (EMG) and suprapubic cystometry (CMG) under urethane anesthesia. Immunofluorescence techniques were used to evaluate prostatic autonomic innervation and P2X3R expression in bladder urothelial cells. The functional role of P2X3R was characterized by intramuscular application of AF-353, a selective P2X2/3R antagonist. RESULTS: The prostate index significantly increased in MOR, suggestive of an enlarged prostate affecting micturition patterns. Significant EMG and CMG differences were found between MYR and MOR. Higher immunoreactivity for P2X2/3R in the urothelial layer and for prostatic neurofilaments was seen in MOR. Systemic inhibition of P2X2/3R had minimal effects on MYR responsiveness, but improved voiding function in MOR with a marked decrease of intravesical pressure and bladder contractile responses. CONCLUSION: The data support the hypothesis that an enlarged prostate in MOR may contribute to voiding dysfunction involving activation of P2X2/3R, which enhances a prostate-bladder reflex. This reflex may increase bladder afferent transmission and activation of increased prostate innervation, leading to voiding dysfunction.

6.
Toxicon ; 178: 92-99, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32135198

RESUMO

Opossums in the clade Didelphini are well known to be resistant to snake venom due to endogenous circulating inhibitors which target metalloproteinases and phospholipases. However, the mechanisms through which these opossums cope with a variety of other damaging venom proteins are unknown. A protein involved in blood clotting (von Willebrand Factor) has been found to have undergone rapid adaptive evolution in venom-resistant opossums. This protein is a known target for a subset of snake venom C-type lectins (CTLs), which bind it and then induce it to bind platelets, causing hemostatic disruption. Several amino acid changes in vWF unique to these opossums could explain their resistance; however, experimental evidence that these changes disrupt venom CTL binding was lacking. We used platelet aggregation assays to quantify resistance to a venom-induced platelet response in two species of venom-resistant opossums (Didelphis virginiana, Didelphis aurita), and one venom-sensitive opossum (Monodelphis domestica). We found that all three species have lost nearly all their aggregation response to the venom CTLs tested. Using washed platelet assays we showed that this loss of aggregation response is not due to inhibitors in the plasma, but rather to the failure of either vWF or platelets (or both) to respond to venom CTLs. These results demonstrate the potential adaptive function of a trait previously shown to be evolving under positive selection. Surprisingly, these findings also expand the list of potentially venom tolerant species to include Monodelphis domestica and suggest that an ecological relationship between opossums and vipers may be a broader driver of adaptive evolution across South American marsupials than previously thought.


Assuntos
Adaptação Fisiológica/fisiologia , Didelphis/fisiologia , Venenos de Serpentes/toxicidade , Fator de von Willebrand/metabolismo , Animais , Plaquetas/metabolismo , Lectinas Tipo C/metabolismo , Metaloproteases/metabolismo , Agregação Plaquetária , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , América do Sul
7.
Dig Dis Sci ; 65(2): 423-430, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31471861

RESUMO

BACKGROUND: Electromyographic studies have shown that external anal sphincter activity is modified in response to distension in animals with spinal cord injury. Gonadotropin-releasing hormone and its agonist leuprolide acetate have neurotrophic properties in animals with spinal cord injury. AIM: This study was to determine the effects of leuprolide acetate treatment on electromyographic activity of the external anal sphincter and anorectal manometry in ovariectomized rats with spinal cord injury. METHODS: Adult ovariectomized rats were divided in three groups: (a) sham of spinal cord injury, (b) spinal cord injury treated with saline solution, and (c) spinal cord injury treated with leuprolide acetate. The spinal cord injury was induced by clamping at level T9. Leuprolide acetate dosage of 10 µg/kg was proctored intramuscular for 5 weeks, commencing the day after the lesion. Electromyography of the external anal sphincter, anorectal manometry, and volume of the cecum were evaluated in all groups. RESULTS: The electromyographic study of the external anal sphincter activity showed a significant improvement in injured rats treated with leuprolide acetate. Manometric analysis and cecum volume data obtained in animals with leuprolide acetate were very similar to those found in the sham group. CONCLUSIONS: These results demonstrate that leuprolide acetate treatment improves the neurogenic colon in ovariectomized rats with spinal cord injury.


Assuntos
Canal Anal/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/agonistas , Leuprolida/farmacologia , Intestino Neurogênico/fisiopatologia , Ovariectomia , Reto/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Canal Anal/fisiopatologia , Animais , Ceco/efeitos dos fármacos , Ceco/fisiopatologia , Eletromiografia , Feminino , Manometria , Intestino Neurogênico/etiologia , Ratos , Ratos Wistar , Reto/fisiopatologia , Traumatismos da Medula Espinal/complicações
8.
Toxicon, v. 178, p. 92-99, abr. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2966

RESUMO

Opossums in the clade Didelphini are well known to be resistant to snake venom due to endogenous circulating inhibitors which target metalloproteinases and phospholipases. However, the mechanisms through which these opossums cope with a variety of other damaging venom proteins are unknown. A protein involved in blood clotting (von Willebrand Factor) has been found to have undergone rapid adaptive evolution in venom-resistant opossums. This protein is a known target for a subset of snake venom C-type lectins (CTLs), which bind it and then induce it to bind platelets, causing hemostatic disruption. Several amino acid changes in vWF unique to these opossums could explain their resistance; however, experimental evidence that these changes disrupt venom CTL binding was lacking. We used platelet aggregation assays to quantify resistance to a venom-induced platelet response in two species of venom-resistant opossums (Didelphis virginiana, Didelphis aurita), and one venom-sensitive opossum (Monodelphis domestica). We found that all three species have lost nearly all their aggregation response to the venom CTLs tested. Using washed platelet assays we showed that this loss of aggregation response is not due to inhibitors in the plasma, but rather to the failure of either vWF or platelets (or both) to respond to venom CTLs. These results demonstrate the potential adaptive function of a trait previously shown to be evolving under positive selection. Surprisingly, these findings also expand the list of potentially venom tolerant species to include Monodelphis domestica and suggest that an ecological relationship between opossums and vipers may be a broader driver of adaptive evolution across South American marsupials than previously thought

9.
Toxicon ; 178: 92-99, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17522

RESUMO

Opossums in the clade Didelphini are well known to be resistant to snake venom due to endogenous circulating inhibitors which target metalloproteinases and phospholipases. However, the mechanisms through which these opossums cope with a variety of other damaging venom proteins are unknown. A protein involved in blood clotting (von Willebrand Factor) has been found to have undergone rapid adaptive evolution in venom-resistant opossums. This protein is a known target for a subset of snake venom C-type lectins (CTLs), which bind it and then induce it to bind platelets, causing hemostatic disruption. Several amino acid changes in vWF unique to these opossums could explain their resistance; however, experimental evidence that these changes disrupt venom CTL binding was lacking. We used platelet aggregation assays to quantify resistance to a venom-induced platelet response in two species of venom-resistant opossums (Didelphis virginiana, Didelphis aurita), and one venom-sensitive opossum (Monodelphis domestica). We found that all three species have lost nearly all their aggregation response to the venom CTLs tested. Using washed platelet assays we showed that this loss of aggregation response is not due to inhibitors in the plasma, but rather to the failure of either vWF or platelets (or both) to respond to venom CTLs. These results demonstrate the potential adaptive function of a trait previously shown to be evolving under positive selection. Surprisingly, these findings also expand the list of potentially venom tolerant species to include Monodelphis domestica and suggest that an ecological relationship between opossums and vipers may be a broader driver of adaptive evolution across South American marsupials than previously thought

10.
Auton Neurosci ; 217: 26-34, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30704972

RESUMO

The aims of the present study were to describe, in male rats, the anatomical organization of the major and accessory pelvic ganglia (MPG, AG; respectively), the interrelationship of the pelvic plexus components, and the morphometry of the pelvic postganglionic neurons. Anatomical, histochemical and histological studies were performed in anesthetized adult Wistar male rats. We found that the pelvic plexus consists of intricate neural circuits composed of two MPG, and three pairs of AG (AGI, AGII, AGIII) anatomically interrelated through ipsilateral and contralateral commissural nerves. Around 30 nerves emerge from each MPG and 17 from AGI and AGII. The MPG efferent nerves spread out preganglionic information to several pelvic organs controlling urinary, bowel, reproductive and sexual functions, while AG innervation is more regional, and it is confined to reproductive organs located in the rostral region of the urogenital tract. Both MPG and AG contain nerve fascicles, blood vessels, small intensely fluorescent cells, satellite cells and oval neuronal somata with one to three nucleoli. The soma area of AG neurons is larger than those of MPG neurons (p < 0.005). The MPG contains about 75% of the total pelvic postganglionic neurons. Our findings corroborated previous reports about MPG inputs, and add new information regarding pelvic ganglia efferent branches, AG neurons (number and morphometry), and neural interrelationship between the pelvic plexus components. This information will be useful in designing future studies about the role of pelvic innervation in the physiology and pathophysiology of pelvic functions.


Assuntos
Fibras Autônomas Pré-Ganglionares , Gânglios Autônomos/anatomia & histologia , Plexo Hipogástrico/anatomia & histologia , Nervos Espinhais/anatomia & histologia , Animais , Masculino , Ratos , Ratos Wistar , Bexiga Urinária/inervação
11.
Neurourol Urodyn ; 38(3): 893-901, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30779374

RESUMO

AIMS: To analyze, in female rats, the anatomical and histological features of the urethra and its relationship with the vagina and clitoris, and its innervation. METHODS: Seventeen adult female Wistar rats were used. Gross anatomy and acetylcholinesterase (AchE) histochemistry were performed to describe the urethral features, adjacent structures, and innervation. The histomorphometric characteristics of the urethra were determined in transversal, longitudinal, or coronal sections stained with Masson's Trichrome. RESULTS: The female rat urethra is not a homogeneous tubular organ. The pre-pelvic and pelvic regions are firmly attached to the vagina with belt-like striated fibers forming a urethra-vaginal complex. The bulbar regions have curved segments and a narrow lumen. The clitoral region is characterized by a urethra-clitoral complex surrounded by a vascular plexus. The lumen area and thickness of the urethral layers significantly varied between regions (P < 0.05). Innervation of the urethra arrives from the major pelvic ganglion, the dorsal nerve of the clitoris (DNC), and the motor branch of the sacral plexus (MBSP). CONCLUSIONS: Differential tissular composition of the urethra may underlie urinary continence and voiding dysfunction through different physiological mechanisms. The urethra-vagina complex seems to be the main site controlling urinary continence through active muscular mechanisms, while the bulbar urethra provides passive mechanisms and the urethra-clitoris complex seems to be crucial for distal urethral closure by means of a periurethral vascular network.


Assuntos
Uretra/metabolismo , Uretra/fisiologia , Incontinência Urinária , Micção/fisiologia , Acetilcolinesterase/metabolismo , Animais , Composição Corporal , Clitóris/anatomia & histologia , Clitóris/inervação , Clitóris/fisiologia , Feminino , Plexo Hipogástrico/fisiologia , Plexo Lombossacral/fisiologia , Nervo Pudendo/fisiologia , Ratos , Ratos Wistar , Uretra/inervação , Vagina/anatomia & histologia , Vagina/inervação , Vagina/fisiologia
12.
BJU Int ; 123(3): 538-547, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30255543

RESUMO

OBJECTIVES: To evaluate the role that intravesical P2X2/3 purinergic receptors (P2X2/3Rs) play in early and advanced neurogenic lower urinary tract (LUT) dysfunction after contusion spinal cord injury (SCI) in female rats. MATERIALS AND METHODS: Female Sprague-Dawley rats received a thoracic Th8/Th9 spinal cord contusion with either force of 100 kDy (cN); moderate) or 150 kDy (cN; severe); Sham rats had no injury. Evaluations on urethane-anesthetised rats were conducted at either 2 or 4 weeks after SCI. LUT electrical signals and changes in bladder pressure were simultaneously recorded using cystometry and a set of custom-made flexible microelectrodes, before and after intravesical application of the P2X2/3R antagonist AF-353 (10 µM), to determine the contribution of P2X2/3R-mediated LUT modulation. RESULTS: Severe SCI significantly increased bladder contraction frequency, and reduced both bladder pressure amplitude and intraluminal-pressure high-frequency oscillations (IPHFO). Intravesical P2X2/3R inhibition did not modify bladder pressure or IPHFO in the Sham and moderate-SCI rats, although did increase the intercontractile interval (ICI). At 2 weeks after SCI, the Sham and moderate-SCI rats had significant LUT electromyographic activity during voiding, with a noticeable reduction in LUT electrical signals seen at 4 weeks after SCI. Intravesical inhibition of P2X2/3R increased the ICI in the Sham and moderate-SCI rats at both time-points, but had no effect on rats with severe SCI. The external urethral sphincter (EUS) showed strong and P2X2/3R-independent electrical signals in the Sham and moderate-SCI rats in the early SCI stage. At 4 weeks after SCI, the responsiveness of the EUS was significantly attenuated, independently of SCI intensity. CONCLUSIONS: This study shows that electrophysiological properties of the LUT are progressively impaired depending on SCI intensity and that intravesical P2X2/3R inhibition can attenuate electrical activity in the neurogenic LUT at early, but not at semi-chronic SCI. This translational study should be useful for planning clinical evaluations.


Assuntos
Éteres Fenílicos/farmacologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Pirimidinas/farmacologia , Traumatismos da Medula Espinal/fisiopatologia , Uretra/fisiopatologia , Bexiga Urinaria Neurogênica/fisiopatologia , Micção/fisiologia , Administração Intravesical , Animais , Modelos Animais de Doenças , Eletromiografia , Feminino , Éteres Fenílicos/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Uretra/efeitos dos fármacos , Micção/efeitos dos fármacos
13.
Am J Physiol Renal Physiol ; 315(6): F1555-F1564, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30132345

RESUMO

The pudendal nerve can be injured during vaginal delivery of children, and slowed pudendal nerve regeneration has been correlated with development of stress urinary incontinence (SUI). Simultaneous injury to the pudendal nerve and its target muscle, the external urethral sphincter (EUS), during delivery likely leads to slowed neuroregeneration. The goal of this study was to determine if repeat electrical stimulation of the pudendal nerve improves SUI recovery and promotes neuroregeneration in a dual muscle and nerve injury rat model of SUI. Rats received electrical stimulation or sham stimulation of the pudendal nerve twice weekly for up to 2 wk after injury. A separate cohort of rats received sham injury and sham stimulation. Expression of brain-derived neurotrophic factor (BDNF) and ßII-tubulin expression in Onuf's nucleus were measured 2, 7, and 14 days after injury. Urodynamics, leak point pressure (LPP), and EUS electromyography (EMG) were recorded 14 days after injury. Electrical stimulation significantly increased expression of BDNF at all time points and ßII-tubulin 1 and 2 wk after injury. Two weeks after injury, LPP and EUS EMG during voiding and LPP testing were significantly decreased compared with sham-injured animals. Electrical stimulation significantly increased EUS activity during voiding, although LPP did not fully recover. Repeat pudendal nerve stimulation promotes neuromuscular continence mechanism recovery possibly via a neuroregenerative response through BDNF upregulation in the pudendal motoneurons in this model of SUI. Electrical stimulation of the pudendal nerve may therefore improve recovery after childbirth and ameliorate symptoms of SUI by promoting neuroregeneration after injury.


Assuntos
Terapia por Estimulação Elétrica/métodos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Nervo Pudendo/fisiopatologia , Bexiga Urinária/inervação , Incontinência Urinária por Estresse/terapia , Urodinâmica , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Nervo Pudendo/lesões , Nervo Pudendo/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Tubulina (Proteína)/metabolismo , Bexiga Urinária/metabolismo , Incontinência Urinária por Estresse/metabolismo , Incontinência Urinária por Estresse/fisiopatologia
14.
Neural Regen Res ; 13(10): 1743-1752, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30136689

RESUMO

Copolymer-1 (Cop-1) is a peptide with immunomodulatory properties, approved by the Food and Drug Administration of United States in the treatment of multiple sclerosis. Cop-1 has been shown to exert neuroprotective effects and induce neurogenesis in cerebral ischemia models. Nevertheless, the mechanism involved in the neurogenic action of this compound remains unknown. The choroid plexus (CP) is a network of cells that constitute the interphase between the immune and central nervous systems, with the ability to mediate neurogenesis through the release of cytokines and growth factors. Therefore, the CP could play a role in Cop-1-induced neurogenesis. In order to determine the participation of the CP in the induction of neurogenesis after Cop-1 immunization, we evaluated the gene expression of various growth factors (brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3) and cytokines (tumor necrosis factor alpha, interferon-gamma, interleukin-4 (IL-4), IL-10 and IL-17), in the CP at 14 days after ischemia. Furthermore, we analyzed the correlation between the expression of these genes and neurogenesis. Our results showed that Cop-1 was capable of stimulating an upregulation in the expression of the genes encoding for brain-derived neurotrophic factor, insulin-like growth factor 1, neurotrophin-3 and IL-10 in the CP, which correlated with an increase in neurogenesis in the subventricular and subgranular zone. As well, we observed a downregulation of IL-17 gene expression. This study demonstrates the effect of Cop-1 on the expression of growth factors and IL-10 in the CP, in the same way, presents a possible mechanism involved in the neurogenic effect of Cop-1.

15.
Int Neurourol J ; 22(1): 9-19, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29609424

RESUMO

PURPOSE: To characterize the electromyographic activity of abdominal striated muscles during micturition in urethane-anesthetized female mice, and to quantitatively evaluate the contribution of abdominal responses to efficient voiding. METHODS: Cystometric and multichannel electromyographic recordings were integrated to enable a comprehensive evaluation during micturition in urethane-anesthetized female mice. Four major abdominal muscle domains were evaluated: the external oblique, internal oblique, and superior and inferior rectus abdominis. To further characterize the functionality of the abdominal muscles, pancuronium bromide (25 µg/mL or 50 µg/mL, abdominal surface) was applied as a blocking agent of neuromuscular junctions. RESULTS: We observed a robust activation of the abdominal muscles during voiding, with a consistent onset/offset concomitant with the bladder pressure threshold. Pancuronium was effective, in a dose-dependent fashion, for partial and complete blockage of abdominal activity. Electromyographic discharges during voiding were significantly inhibited by applying pancuronium. Decreased cystometric parameters were recorded, including the peak pressure, pressure threshold, intercontractile interval, and voiding duration, suggesting that the voiding efficiency was significantly compromised by abdominal muscle relaxation. CONCLUSIONS: The relevance of the abdominal striated musculature for micturition has remained a topic of debate in human physiology. Although the study was performed on anesthetized mice, these results support the existence of synergistic abdominal electromyographic activity facilitating voiding in anesthetized mice. Further, our study presents a rodent model that can be used for future investigations into micturition-related abdominal activity.

16.
Neurourol Urodyn ; 36(7): 1749-1756, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28102579

RESUMO

AIM: To determine the anatomical organization and somatic axonal components of the lumbosacral nerves in female rabbits. METHODS: Chinchilla adult anesthetized female rabbits were used. Anatomical, electrophysiological, and histological studies were performed. RESULTS: L7, S1, and some fibers from S2 and S3 form the lumbosacral trunk, which gives origin to the sciatic nerve and innervation to the gluteal region. From S2 to S3 originates the pudendal nerve, whose branches innervates the striated anal and urethra sphincters, as well as the bulbospongiosus, ischiocavernosus, and constrictor vulvae muscles. The sensory field of the pudendal nerve is ∼1800 mm2 and is localized in the clitoral sheath and perineal and perigenital skin. The organization of the pudendal nerve varies between individuals, three patterns were identified, and one of them was present in 50% of the animals. From S3 emerge the pelvic nerve, which anastomoses to form a plexus localized between the vagina and the rectum. The innervation of the pelvic floor originates from S3 to S4 fibers. CONCLUSIONS: Most of the sacral spinal nerves of rabbit are mixed, carrying sensory, and motor information. Sacral nerves innervate the hind limbs, pelvic viscera, clitoris, perineal muscles, inguinal and anal glands and perineal, perigenital, and rump skin. The detailed description of the sacral nerves organization, topography, and axonal components further the knowledge of the innervation in pelvic and perinal structures of the female rabbit. This information will be useful in future studies about the physiology and physiopathology of urinary, fecal, reproductive, and sexual functions.


Assuntos
Plexo Lombossacral/anatomia & histologia , Diafragma da Pelve/inervação , Uretra/inervação , Animais , Feminino , Músculo Esquelético/inervação , Coelhos , Reto/anatomia & histologia , Vagina/anatomia & histologia
17.
Mol Reprod Dev ; 83(2): 108-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26613191

RESUMO

The first lineage allocation during mouse development forms the trophectoderm and inner cell mass, in which Cdx2 and Pou5f1 display reciprocal expression. Yet Cdx2 is not required for trophectoderm specification in other mammals, such as the human, cow, pig, or in two marsupials, the tammar and opossum. The role of Cdx2 and Pou5f1 in the first lineage allocation of Sminthopsis macroura, the stripe-faced dunnart, is unknown. In this study, expression of Cdx2 and Pou5f1 during oogenesis, development from cleavage to blastocyst stages, and in the allocation of the first three lineages was analyzed for this dunnart. Cdx2 mRNA was present in late antral-stage oocytes, but not present again until Day 5.5. Pou5f1 mRNA was present from primary follicles to zygotes, and then expression resumed starting at the early unilaminar blastocyst stage. All cleavage stages and the pluriblast and trophoblast cells co-expressed CDX2 and POU5F1 proteins, which persisted until early stages of hypoblast formation. Hypoblast cells also show co-localisation of POU5F1 and CDX2 once they were allocated, and this persisted during their division and migration. Our studies suggest that CDX2, and possibly POU5F1, are maternal proteins, and that the first lineage to differentiate is the trophoblast, which differentiates to trophectoderm after shell loss one day before implantation. In the stripe-faced dunnart, cleavage cells, as well as trophoblast and pluriblast cells, are polarized, suggesting the continued presence of CDX2 in both lineages until late blastocyst stages may play a role in the formation and maintenance of polarity.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Marsupiais/embriologia , Fator 3 de Transcrição de Octâmero/biossíntese , Animais , Blastocisto/citologia , Humanos , Camundongos , RNA Mensageiro
18.
J Urol ; 195(2): 507-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26196732

RESUMO

PURPOSE: We determined the effect of chronic bilateral neurectomy of the dorsal nerve of the clitoris on urinary parameters and sexual behavior of conscious female rats. MATERIALS AND METHODS: A total of 18 anesthetized virgin female Wistar rats were used in this study, including 11 that underwent bilateral neurectomy of the dorsal nerve of the clitoris and 7 that underwent sham surgery. Urinary parameters were determined in awake animals preoperatively, and 3 and 10 days postoperatively. Sexual behavior was tested 14 days postoperatively to determine whether the females expelled urine during sexual encounters. After male ejaculation the females were anesthetized with urethane to record external urethral sphincter electromyogram activity in response to clitoris, perigenital skin and vaginal stimulation. Neurectomy was corroborated anatomically. RESULTS: Sham surgery did not significantly modify urinary parameter values. However, bilateral neurectomy of the dorsal nerve of the clitoris significantly increased voiding frequency and voiding duration (p <0.05). It did not significantly affect the flow rate, voided volume or voiding interval. Of females that underwent bilateral neurectomy of the dorsal nerve of the clitoris 67% expelled urine just after male ejaculation. CONCLUSIONS: These results suggest that the pudendal nerve is an important neural pathway in the convergence and crosstalk of female urogenital neural circuits, and genital deafferentation may be a causal factor of coital urinary incontinence. Rats with bilateral transection of the dorsal nerve of the clitoris may serve as an animal model of coital incontinence.


Assuntos
Clitóris/inervação , Coito , Procedimentos Neurocirúrgicos/métodos , Nervo Pudendo/cirurgia , Incontinência Urinária/etiologia , Animais , Modelos Animais de Doenças , Eletromiografia , Feminino , Masculino , Ratos , Ratos Wistar , Incontinência Urinária/fisiopatologia
19.
Neurourol Urodyn ; 35(8): 914-919, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26250983

RESUMO

AIMS: To determine whether the external urethral sphincter (EUS) fasciculi of male rats respond to the mechanical stimulation of genital structures and to characterize the pattern of the electromyographic (EMG) activity of the three regions of the EUS: the cranial (CrEUS), the medial (MeEUS) and the caudal (CaEUS). METHODS: Electromyographic signals were recorded from the CrEUS, MeEUS and CaEUS regions of the male rat's EUS, before, during and after the mechanical stimulation of the urogenital structures. RESULTS: The CrEUS, MeEUS and CaEUS regions responded when brushing and squeezing the foreskin and glans as well as to penile and prostatic urethral distension. The CaEUS EMG amplitude (P < 0.01) and frequency (P < 0.05) were lower in comparison to the CrEUS and MeEUS responses to the mechanical stimulation. In addition, the CaEUS was characterized by a short or no afterdischarge. In contrast, the CrEUS and MeEUS responded by presenting a long discharge after the penile or prostatic urethral distension. CONCLUSIONS: The activity of the EUS is modulated by both, cutaneous and visceral genitourinary stimuli, with motor units being activated by mechanoreceptors located in the foreskin, glans, bladder, and urethra. The CrEUS, MeEUS and CaEUS have differential EMG patterns, indicating that the EUS consists of three anatomically and functionally different regions. Precise coordination in the muscular activity of these regions may be crucial for the control of male expulsive urethral functions, i.e., during voiding and ejaculation. Neurourol. Urodynam. 35:914-919, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Genitália Masculina/fisiologia , Uretra/fisiologia , Animais , Eletromiografia , Prepúcio do Pênis/inervação , Prepúcio do Pênis/fisiologia , Masculino , Mecanorreceptores/fisiologia , Neurônios Motores/fisiologia , Miócitos de Músculo Liso/fisiologia , Pênis/inervação , Pênis/fisiologia , Estimulação Física , Próstata/inervação , Próstata/fisiologia , Ratos , Ratos Wistar , Escroto/inervação , Escroto/fisiologia , Uretra/efeitos dos fármacos , Bexiga Urinária/fisiologia
20.
Front Neurol ; 6: 108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029162

RESUMO

The rat is the most common animal model for the preclinical validation of neuroprotective therapies in spinal cord injury (SCI). Lipid peroxidation (LP) is a hallmark of the damage triggered after SCI. Free radicals react with fatty acids causing cellular and membrane disruption. LP accounts for a considerable amount of neuronal cell death after SCI. To better understand the implications of inbred and outbred rat strain selection on preclinical SCI research, we evaluated LP after laminectomy sham surgery and a severe contusion of the T9 spinal cord in female Sprague-Dawley (SPD), Lewis (LEW), and Fischer 344 (F344) rats. Further analysis included locomotor recovery using the Basso, Beattie, and Bresnahan (BBB) scale and retrograde rubrospinal tract tracing. LEW had the highest levels of LP products 72 h after sham surgery and SCI, significantly different from both F344 and SPD. SPD rats had the fastest functional recovery and highest BBB scores; these were not significantly different to F344. However, LEW rats achieved the lowest BBB scores throughout the 2-month follow-up, yielding significant differences when compared to SPD and F344. To see if the improvement in locomotion was secondary to an increase in axon survival, we evaluated rubrospinal neurons (RSNs) via retrograde labeling of the rubrospinal tract and quantified cells at the red nuclei. The highest numbers of RSNs were observed in SPD rats then F344; the lowest counts were seen in LEW rats. The BBB scores significantly correlated with the amount of positively stained RSN in the red nuclei. It is critical to identify interstrain variations as a potential confound in preclinical research. Multi-strain validation of neuroprotective therapies may increase chances of successful translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA