Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 20(6): e1004157, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384638

RESUMO

BACKGROUND: Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS: We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (ß2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS: CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.


Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Humanos , Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , Estudos Prospectivos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação
2.
medRxiv ; 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36597532

RESUMO

Chronic lymphocytic leukemia (CLL) patients have lower seroconversion rates and antibody titers following SARS-CoV-2 vaccination, but the reasons for this diminished response are poorly understood. Here, we studied humoral and cellular responses in 95 CLL patients and 30 healthy controls after two BNT162b2 or mRNA-2173 mRNA immunizations. We found that 42% of CLL vaccinees developed SARS-CoV-2-specific binding and neutralizing antibodies (NAbs), while 32% had no response. Interestingly, 26% were seropositive, but had no detectable NAbs, suggesting the maintenance of pre-existing endemic human coronavirus-specific antibodies that cross-react with the S2 domain of the SARS-CoV-2 spike. These individuals had more advanced disease. In treatment-naïve CLL patients, mRNA-2173 induced 12-fold higher NAb titers and 1.7-fold higher response rates than BNT162b2. These data reveal a graded loss of immune function, with pre-existing memory being preserved longer than the capacity to respond to new antigens, and identify mRNA-2173 as a superior vaccine for CLL patients.

3.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34193339

RESUMO

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Assuntos
COVID-19 , Formação de Anticorpos , COVID-19/imunologia , Teste Sorológico para COVID-19 , Humanos , Nasofaringe , SARS-CoV-2 , Soroconversão
4.
Cell Rep ; 35(1): 108933, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826885

RESUMO

Artificial glycan holes on recombinant Env-based vaccines occur when a potential N-linked glycosylation site (PNGS) is under-occupied, but not on their viral counterparts. Native-like SOSIP trimers, including clinical candidates, contain such holes in the glycan shield that induce strain-specific neutralizing antibodies (NAbs) or non-NAbs. To eliminate glycan holes and mimic the glycosylation of native BG505 Env, we replace all 12 NxS sequons on BG505 SOSIP with NxT. All PNGS, except N133 and N160, are nearly fully occupied. Occupancy of the N133 site is increased by changing N133 to NxS, whereas occupancy of the N160 site is restored by reverting the nearby N156 sequon to NxS. Hence, PNGS in close proximity, such as in the N133-N137 and N156-N160 pairs, affect each other's occupancy. We further apply this approach to improve the occupancy of several Env strains. Increasing glycan occupancy should reduce off-target immune responses to vaccine antigens.


Assuntos
HIV-1/metabolismo , Polissacarídeos/metabolismo , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Animais , Células CHO , Cricetulus , Microscopia Crioeletrônica , Glicosilação , Células HEK293 , Hexosiltransferases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Polissacarídeos/química , Solubilidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/ultraestrutura
5.
bioRxiv ; 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33758842

RESUMO

Vaccines are critical for curtailing the COVID-19 pandemic (1, 2). In the USA, two highly protective mRNA vaccines are available: BNT162b2 from Pfizer/BioNTech and mRNA-1273 from Moderna (3, 4). These vaccines induce antibodies to the SARS-CoV-2 S-protein, including neutralizing antibodies (NAbs) predominantly directed against the Receptor Binding Domain (RBD) (1-4). Serum NAbs are induced at modest levels within ~1 week of the first dose, but their titers are strongly boosted by a second dose at 3 (BNT162b2) or 4 weeks (mRNA-1273) (3, 4). SARS-CoV-2 is most commonly transmitted nasally or orally and infects cells in the mucosae of the respiratory and to some extent also the gastrointestinal tract (5). Although serum NAbs may be a correlate of protection against COVID-19, mucosal antibodies might directly prevent or limit virus acquisition by the nasal, oral and conjunctival routes (5). Whether the mRNA vaccines induce mucosal immunity has not been studied. Here, we report that antibodies to the S-protein and its RBD are present in saliva samples from mRNA-vaccinated healthcare workers (HCW). Within 1-2 weeks after their second dose, 37/37 and 8/8 recipients of the Pfizer and Moderna vaccines, respectively, had S-protein IgG antibodies in their saliva, while IgA was detected in a substantial proportion. These observations may be relevant to vaccine-mediated protection from SARS-CoV-2 infection and disease.

6.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852794

RESUMO

We covalently attached human immunodeficiency virus type 1 (HIV-1) Env SOSIP trimers to iron oxide nanoparticles (IO-NPs) to create a particulate immunogen for neutralizing antibody (NAb) induction. The attached trimers, ∼20 per particle, retained native-like antigenicity, judged by reactivity with NAbs and non-NAbs. Bivalent (BG505 and B41) trimer IO-NPs were made, as were IO-NPs displaying B41 trimers carrying a PADRE T-cell helper epitope (TCHE). We immunized mice with B41 soluble or IO-NP trimers after PADRE peptide priming. After two immunizations, IO-NP presentation and the TCHE tag independently and substantially increased anti-trimer antibody responses, but titer differences waned after two further doses. Notable and unexpected findings were that autologous NAbs to the N289 glycan hole epitope were consistently induced in mice given soluble but not IO-NP trimers. Various recombinant mannose binding lectins (MBLs) and MBLs in sera of both murine and human origin bound to soluble and IO-NP trimers. MBL binding occluded the autologous NAb epitope on the B41 IO-NP trimers, which may contribute to its poor immunogenicity. The exposure of a subset of broadly active NAb epitopes was also impaired by MBL binding, which could have substantial implications for the utility of trimer-bearing nanoparticles in general and perhaps also for soluble Env proteins.IMPORTANCE Recombinant trimeric SOSIP proteins are vaccine components intended to induce neutralizing antibodies (NAbs) that prevent cells from infection by human immunodeficiency virus type 1 (HIV-1). A way to increase the strength of antibody responses to these proteins is to present them on the surface of nanoparticles (NPs). We chemically attached about 20 SOSIP trimers to NPs made of iron oxide (IO). The resulting IO-NP trimers had appropriate properties when we studied them in the laboratory but, unexpectedly, were less able to induce NAbs than nonattached trimers when used to immunize mice. We found that mannose binding lectins, proteins naturally present in the serum of mice and other animals, bound strongly to the soluble and IO-NP trimers, blocking access to antibody epitopes in a way that may impede the development of NAb responses. These findings should influence how trimer-bearing NPs of various designs are made and used.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito T/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Nanopartículas de Magnetita , Lectina de Ligação a Manose/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Humanos , Camundongos , Multimerização Proteica/imunologia
7.
PLoS One ; 14(4): e0215106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958859

RESUMO

We describe methods to improve the efficiency with which HIV-1 Envelope glycoprotein SOSIP trimer immunogens can be produced by transient transfection of ExpiCHO-S cells and then affinity purified using the trimer-specific human monoclonal antibody PGT145. The specificity of PGT145 for properly folded trimers allows for the facile, one-step, isolation of these immunogens in research laboratories. PGT145 columns are also valuable as a component of more complex purification processes in current Good Manufacturing Practice programs. However, we found that PGT145 purification was highly variable and markedly inefficient when used to process supernatants from transiently transfected ExpiCHO-S cells expressing the BG505 SOSIP.664 and other trimeric Env proteins. In contrast, no such problems arose when the same Env proteins derived from a stable CHO cell line were processed on the same PGT145 columns, or with transient transfection supernatants from 293F cells. An investigation of the ExpiCHO-S transfection system identified the presence of polyanions, including but perhaps not limited to dextran sulfate, in the Enhancer component of the transfection system. We hypothesized that these polyanions bound to the cationic PGT145 epitope on the trimers and impeded their ability to bind to the PGT145 affinity column. We found that replacing the Enhancer component with alternative culture medium supplements substantially increased the yield of PGT145-purifiable trimers, and we also confirmed that both dextran sulfate and the Enhancer component were indeed inhibitors of PGT145 binding to BG505 SOSIP.664 trimers in immunoassays. The presence of polyanions, including but not limited to nucleic acids, should be considered in other circumstances where PGT145 columns are less efficient than expected at purifying native-like trimers.


Assuntos
Anticorpos Monoclonais/metabolismo , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/normas , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/isolamento & purificação , Animais , Anticorpos Monoclonais/imunologia , Cricetinae , Cricetulus , Humanos , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
8.
J Proteome Res ; 17(3): 987-999, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420040

RESUMO

Broadly neutralizing antibodies (bNAbs) that target the trimeric HIV-1 envelope glycoprotein spike (Env) are tools that can guide the design of recombinant Env proteins intended to engage the predicted human germline precursors of bNAbs (gl-bNAbs). The protein components of gl-bNAb epitopes are often masked by glycans, while mature bNAbs can evolve to accommodate or bypass these shielding glycans. The design of germline-targeting Env immunogens therefore includes the targeted deletion of specific glycan sites. However, the processing of glycans on Env trimers can be influenced by the density with which they are packed together, a highly relevant point given the essential contributions under-processed glycans make to multiple bNAb epitopes. We sought to determine the impact of the removal of 15 potential N-glycan sites (5 per protomer) from the germline-targeting soluble trimer, BG505 SOSIP.v4.1-GT1, using quantitative, site-specific N-glycan mass spectrometry analysis. We find that, compared with SOSIP.664, there was little overall change in the glycan profile but only subtle increases in the extent of processing at sites immediately adjacent to where glycans had been deleted. We conclude that multiple glycans can be deleted from BG505 SOSIP trimers without perturbing the overall integrity of the glycan shield.


Assuntos
Anticorpos Neutralizantes/química , Epitopos/química , Anticorpos Anti-HIV/química , HIV-1/metabolismo , Polissacarídeos/química , Processamento de Proteína Pós-Traducional , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Motivos de Aminoácidos , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sítios de Ligação , Células CHO , Sequência de Carboidratos , Linhagem da Célula/imunologia , Cricetulus , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Expressão Gênica , Glicosilação , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/metabolismo , HIV-1/genética , HIV-1/imunologia , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
9.
J Virol ; 91(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28381572

RESUMO

Soluble, recombinant native-like envelope glycoprotein (Env) trimers of various human immunodeficiency virus type 1 (HIV-1) genotypes are being developed for structural studies and as vaccine candidates aimed at the induction of broadly neutralizing antibodies (bNAbs). The prototypic design is designated SOSIP.664, but many HIV-1 env genes do not yield fully native-like trimers efficiently. One such env gene is CZA97.012 from a neutralization-resistant (tier 2) clade C virus. As appropriately purified, native-like CZA97.012 SOSIP.664 trimers induce autologous neutralizing antibodies (NAbs) efficiently in immunized rabbits, we sought to improve the efficiency with which they can be produced and to better understand the limitations to the original design. By using structure- and antigenicity-guided mutagenesis strategies focused on the V2 and V3 regions and the gp120-gp41 interface, we developed the CZA97 SOSIP.v4.2-M6.IT construct. Fully native-like, stable trimers that display multiple bNAb epitopes could be expressed from this construct in a stable CHO cell line and purified at an acceptable yield using either a PGT145 or a 2G12 bNAb affinity column. We also show that similar mutagenesis strategies can be used to improve the yields and properties of SOSIP.664 trimers of the DU422, 426c, and 92UG037 genotypes.IMPORTANCE Recombinant trimeric proteins based on HIV-1 env genes are being developed for future vaccine trials in humans. A feature of these proteins is their mimicry of the envelope glycoprotein (Env) structure on virus particles that is targeted by neutralizing antibodies, i.e., antibodies that prevent cells from becoming infected. The vaccine concept under exploration is that recombinant trimers may be able to elicit virus-neutralizing antibodies when delivered as immunogens. Because HIV-1 is extremely variable, a practical vaccine may need to incorporate Env trimers derived from multiple different virus sequences. Accordingly, we need to understand how to make recombinant trimers from many different env genes. Here, we show how to produce trimers from a clade C virus, CZA97.012, by using an array of protein engineering techniques to improve a prototypic construct. We also show that the methods may have wider utility for other env genes, thereby further guiding immunogen design.


Assuntos
HIV-1/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/isolamento & purificação , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Células CHO , Cricetulus , Epitopos/imunologia , Genótipo , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , HIV-1/genética , HIV-1/imunologia , Humanos , Imunização , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Multimerização Proteica , Coelhos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Solubilidade , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA