Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ISME J ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696719

RESUMO

Bacterial predators are decisive organisms that shape microbial ecosystems. In this study, we investigated the role of iron and siderophores during the predatory interaction between two rhizosphere bacteria: Myxococcus xanthus, an epibiotic predator, and Sinorhizobium meliloti, a bacterium that establishes nitrogen-fixing symbiosis with legumes. The results show that iron enhances the motility of the predator and facilitates its predatory capability, and that intoxication by iron is not used by the predator to prey, although oxidative stress increases in both bacteria during predation. However, competition for iron plays an important role in the outcome of predatory interactions. Using combinations of predator and prey mutants (non-producers and overproducers of siderophores), we have investigated the importance of competition for iron in predation. The results demonstrate that the competitor that, via the production of siderophores, obtains sufficient iron for growth and depletes metal availability for the opponent will prevail in the interaction. Consequently, iron fluctuations in soils may modify the composition of microbial communities by altering the activity of myxobacterial predators. In addition, siderophore overproduction during predation can alter soil properties, affecting the productivity and sustainability of agricultural operations.

2.
Plants (Basel) ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38475474

RESUMO

Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.

3.
Methods Mol Biol ; 2751: 205-217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265718

RESUMO

Rhizobia are soil proteobacteria able to establish a nitrogen-fixing interaction with legumes. In this interaction, rhizobia must colonize legume roots, infect them, and become hosted inside new organs formed by the plants and called nodules. Rhizobial motility, not being essential for symbiosis, might affect the degree of success of the interaction with legumes. Because of this, the study of rhizobial motility (either swimming or surface motility) might be of interest for research teams working on rhizobial symbiotic performance. In this chapter, we describe the protocols we use in our laboratories for studying the different types of motilities exhibited by Sinorhizobium fredii and Sinorhizobium meliloti, as well as for analyzing the presence of flagella in these bacteria. All these protocols might be used (or adapted) for studying bacterial motility in rhizobia.


Assuntos
Fabaceae , Rhizobium , Natação , Verduras , Flagelos
4.
Int J Mol Sci ; 24(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36982921

RESUMO

Bacterial surface motility is a complex microbial trait that contributes to host colonization. However, the knowledge about regulatory mechanisms that control surface translocation in rhizobia and their role in the establishment of symbiosis with legumes is still limited. Recently, 2-tridecanone (2-TDC) was identified as an infochemical in bacteria that hampers microbial colonization of plants. In the alfalfa symbiont Sinorhizobium meliloti, 2-TDC promotes a mode of surface motility that is mostly independent of flagella. To understand the mechanism of action of 2-TDC in S. meliloti and unveil genes putatively involved in plant colonization, Tn5 transposants derived from a flagellaless strain that were impaired in 2-TDC-induced surface spreading were isolated and genetically characterized. In one of the mutants, the gene coding for the chaperone DnaJ was inactivated. Characterization of this transposant and newly obtained flagella-minus and flagella-plus dnaJ deletion mutants revealed that DnaJ is essential for surface translocation, while it plays a minor role in swimming motility. DnaJ loss-of-function reduces salt and oxidative stress tolerance in S. meliloti and hinders the establishment of efficient symbiosis by affecting nodule formation efficiency, cellular infection, and nitrogen fixation. Intriguingly, the lack of DnaJ causes more severe defects in a flagellaless background. This work highlights the role of DnaJ in the free-living and symbiotic lifestyles of S. meliloti.


Assuntos
Fixação de Nitrogênio , Sinorhizobium meliloti , Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Simbiose/genética , Medicago sativa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887044

RESUMO

Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and ß-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the transcription of different rhizobial genes (the so-called nod regulon) and, together with additional bacterial regulatory proteins (such as TtsI, MucR or NolR), influence the production of different rhizobial molecular signals. In Sinorhizobium fredii HH103, flavonoids and NodD have a negative effect on exopolysaccharide production and biofilm production. Since biofilm formation and motility are often inversely regulated, we have analysed whether flavonoids may influence the translocation of S. fredii HH103 on surfaces. We show that the presence of nod gene-inducing flavonoids does not affect swimming but promotes a mode of surface translocation, which involves both flagella-dependent and -independent mechanisms. This surface motility is regulated in a flavonoid-NodD1-TtsI-dependent manner, relies on the assembly of the symbiotic type 3 secretion system (T3SS), and involves the participation of additional modulators of the nod regulon (NolR and MucR1). To our knowledge, this is the first evidence indicating the participation of T3SS in surface motility in a plant-interacting bacterium. Interestingly, flavonoids acting as nod-gene inducers also participate in the inverse regulation of surface motility and biofilm formation, which could contribute to a more efficient plant colonisation.


Assuntos
Rhizobium , Sinorhizobium fredii , Proteínas de Bactérias/metabolismo , Flavonoides/metabolismo , Flavonoides/farmacologia , Regulação Bacteriana da Expressão Gênica , Plantas/metabolismo , Rhizobium/metabolismo , Sinorhizobium fredii/metabolismo , Simbiose/fisiologia , Sistemas de Secreção Tipo III/metabolismo
6.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759803

RESUMO

Members of Rhizobiaceae contain a homologue of the iron-responsive regulatory protein RirA. In different bacteria, RirA acts as a repressor of iron uptake systems under iron-replete conditions and contributes to ameliorate cell damage during oxidative stress. In Rhizobium leguminosarum and Sinorhizobium meliloti, mutations in rirA do not impair symbiotic nitrogen fixation. In this study, a rirA mutant of broad host range S. fredii HH103 has been constructed (SVQ780) and its free-living and symbiotic phenotypes evaluated. No production of siderophores could be detected in either the wild-type or SVQ780. The rirA mutant exhibited a growth advantage under iron-deficient conditions and hypersensitivity to hydrogen peroxide in iron-rich medium. Transcription of rirA in HH103 is subject to autoregulation and inactivation of the gene upregulates fbpA, a gene putatively involved in iron transport. The S. fredii rirA mutant was able to nodulate soybean plants, but symbiotic nitrogen fixation was impaired. Nodules induced by the mutant were poorly infected compared to those induced by the wild-type. Genetic complementation reversed the mutant's hypersensitivity to H2O2, expression of fbpA, and symbiotic deficiency in soybean plants. This is the first report that demonstrates a role for RirA in the Rhizobium-legume symbiosis.


Assuntos
Proteínas de Bactérias/genética , Glycine max/genética , Glycine max/microbiologia , Estresse Oxidativo/genética , Sinorhizobium fredii/genética , Simbiose/genética , Fabaceae/genética , Fabaceae/microbiologia , Genes Bacterianos/genética , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Fixação de Nitrogênio/genética , Rhizobium leguminosarum/genética , Sideróforos/genética , Sinorhizobium meliloti/genética , Transcrição Gênica/genética
7.
Environ Microbiol ; 20(6): 2049-2065, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29488306

RESUMO

Surface motility and biofilm formation are behaviours which enable bacteria to infect their hosts and are controlled by different chemical signals. In the plant symbiotic alpha-proteobacterium Sinorhizobium meliloti, the lack of long-chain fatty acyl-coenzyme A synthetase activity (FadD) leads to increased surface motility, defects in biofilm development and impaired root colonization. In this study, analyses of lipid extracts and volatiles revealed that a fadD mutant accumulates 2-tridecanone (2-TDC), a methylketone (MK) known as a natural insecticide. Application of pure 2-TDC to the wild-type strain phenocopies the free-living and symbiotic behaviours of the fadD mutant. Structural features of the MK determine its ability to promote S. meliloti surface translocation, which is mainly mediated by a flagella-independent motility. Transcriptomic analyses showed that 2-TDC induces differential expression of iron uptake, redox and stress-related genes. Interestingly, this MK also influences surface motility and impairs biofilm formation in plant and animal pathogenic bacteria. Moreover, 2-TDC not only hampers alfalfa nodulation but also the development of tomato bacterial speck disease. This work assigns a new role to 2-TDC as an infochemical that affects important bacterial traits and hampers plant-bacteria interactions by interfering with microbial colonization of plant tissues.


Assuntos
Proteínas de Bactérias/metabolismo , Cetonas/metabolismo , Cetonas/farmacologia , Medicago sativa/microbiologia , Sinorhizobium meliloti/efeitos dos fármacos , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Mutação , Fenótipo , Sinorhizobium meliloti/genética , Simbiose
8.
J Bacteriol ; 194(8): 2027-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328673

RESUMO

Swarming is a mode of translocation dependent on flagellar activity that allows bacteria to move rapidly across surfaces. In several bacteria, swarming is a phenotype regulated by quorum sensing. It has been reported that the swarming ability of the soil bacterium Sinorhizobium meliloti Rm2011 requires a functional ExpR/Sin quorum-sensing system. However, our previous published results demonstrate that strains Rm1021 and Rm2011, both known to have a disrupted copy of expR, are able to swarm on semisolid minimal medium. In order to clarify these contradictory results, the role played by the LuxR-type regulator ExpR has been reexamined. Results obtained in this work revealed that S. meliloti can move over semisolid surfaces using at least two different types of motility. One type is flagellum-independent surface spreading or sliding, which is positively influenced by a functional expR gene mainly through the production of exopolysaccharide II (EPS II). To a lesser extent, EPS II-deficient strains can also slide on surfaces by a mechanism that is at least dependent on the siderophore rhizobactin 1021. The second type of surface translocation shown by S. meliloti is swarming, which is greatly dependent on flagella and rhizobactin 1021 but does not require ExpR. We have extended our study to demonstrate that the production of normal amounts of succinoglycan (EPS I) does not play a relevant role in surface translocation but that its overproduction facilitates both swarming and sliding motilities.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Movimento/fisiologia , Sinorhizobium meliloti/fisiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias/genética , Meios de Cultura , Flagelos/fisiologia , Mutação , Fenótipo , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum/fisiologia , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/genética
9.
BMC Genomics ; 11: 157, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20210991

RESUMO

BACKGROUND: Swarming is a multicellular phenomenom characterized by the coordinated and rapid movement of bacteria across semisolid surfaces. In Sinorhizobium meliloti this type of motility has been described in a fadD mutant. To gain insights into the mechanisms underlying the process of swarming in rhizobia, we compared the transcriptome of a S. meliloti fadD mutant grown under swarming inducing conditions (semisolid medium) to those of cells grown under non-swarming conditions (broth and solid medium). RESULTS: More than a thousand genes were identified as differentially expressed in response to growth on agar surfaces including genes for several metabolic activities, iron uptake, chemotaxis, motility and stress-related genes. Under swarming-specific conditions, the most remarkable response was the up-regulation of iron-related genes. We demonstrate that the pSymA plasmid and specifically genes required for the biosynthesis of the siderophore rhizobactin 1021 are essential for swarming of a S. meliloti wild-type strain but not in a fadD mutant. Moreover, high iron conditions inhibit swarming of the wild-type strain but not in mutants lacking either the iron limitation response regulator RirA or FadD. CONCLUSIONS: The present work represents the first transcriptomic study of rhizobium growth on surfaces including swarming inducing conditions. The results have revealed major changes in the physiology of S. meliloti cells grown on a surface relative to liquid cultures. Moreover, analysis of genes responding to swarming inducing conditions led to the demonstration that iron and genes involved in rhizobactin 1021 synthesis play a role in the surface motility shown by S. meliloti which can be circumvented in a fadD mutant. This work opens a way to the identification of new traits and regulatory networks involved in swarming by rhizobia.


Assuntos
Citratos/biossíntese , Perfilação da Expressão Gênica , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/genética , Alcenos , Proteínas de Bactérias/genética , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genes Bacterianos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos , RNA Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA