Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(4): 616-630, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914898

RESUMO

During meiotic prophase I, sister chromatids are arranged in a loop-base array along a proteinaceous structure, called the meiotic chromosome axis. This structure is essential for synapsis and meiotic recombination progression and hence formation of genetically diverse gametes. Proteomic studies in plants aiming to unravel the composition and regulation of meiotic axes are constrained by limited meiotic cells embedded in floral organs. Here we report TurboID (TbID)-based proximity labelling (PL) in meiotic cells of Arabidopsis thaliana. TbID fusion to the two meiotic chromosome axis proteins ASY1 and ASY3 enabled the identification of their proximate 'interactomes' based on affinity purification coupled with mass spectrometry. We identified 39 ASY1 and/or ASY3 proximate candidates covering most known chromosome axis-related proteins. Functional studies of selected candidates demonstrate that not only known meiotic candidates but also new meiotic proteins were uncovered. Hence, TbID-based PL in meiotic cells enables the identification of chromosome axis proximate proteins in A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Meiose , Proteínas de Arabidopsis/metabolismo , Proteômica , Cromossomos/metabolismo
2.
Plant Reprod ; 36(1): 1-15, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35767067

RESUMO

KEY MESSAGE: In barley (Hordeum vulgare), MTOPVIB is critical for meiotic DSB and accompanied SC and CO formation while dispensable for meiotic bipolar spindle formation. Homologous recombination during meiosis assures genetic variation in offspring. Programmed meiotic DNA double-strand breaks (DSBs) are repaired as crossover (CO) or non-crossover (NCO) during meiotic recombination. The meiotic topoisomerase VI (TopoVI) B subunit (MTOPVIB) plays an essential role in meiotic DSB formation critical for CO-recombination. More recently MTOPVIB has been also shown to play a role in meiotic bipolar spindle formation in rice and maize. Here, we describe a meiotic DSB-defective mutant in barley (Hordeum vulgare L.). CRISPR-associated 9 (Cas9) endonuclease-generated mtopVIB plants show complete sterility due to the absence of meiotic DSB, synaptonemal complex (SC), and CO formation leading to the occurrence of univalents and their unbalanced segregation into aneuploid gametes. In HvmtopVIB plants, we also frequently found the bi-orientation of sister kinetochores in univalents during metaphase I and the precocious separation of sister chromatids during anaphase I. Moreover, the near absence of polyads after meiosis II, suggests that despite being critical for meiotic DSB formation in barley, MTOPVIB seems not to be strictly required for meiotic bipolar spindle formation.


Assuntos
Proteínas Arqueais , Hordeum , Hordeum/genética , Hordeum/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas Arqueais/genética , Meiose , DNA , Reparo do DNA
3.
Plant Commun ; 4(3): 100507, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36540022

RESUMO

Double haploid production is the most effective way to create true-breeding lines in a single generation. In Arabidopsis, haploid induction via mutation of the centromere-specific histone H3 (cenH3) has been shown when the mutant is outcrossed to the wild-type, and the wild-type genome remains in the haploid progeny. However, factors that affect haploid induction are still poorly understood. Here, we report that a mutant of the cenH3 assembly factor Kinetochore Null2 (KNL2) can be used as a haploid inducer when pollinated by the wild-type. We discovered that short-term temperature stress of the knl2 mutant increased the efficiency of haploid induction 10-fold. We also demonstrated that a point mutation in the CENPC-k motif of KNL2 is sufficient to generate haploid-inducing lines, suggesting that haploid-inducing lines in crops can be identified in a naturally occurring or chemically induced mutant population, avoiding the generic modification (GM) approach at any stage. Furthermore, a cenh3-4 mutant functioned as a haploid inducer in response to short-term heat stress, even though it did not induce haploids under standard conditions. Thus, we identified KNL2 as a new target gene for the generation of haploid-inducer lines and showed that exposure of centromeric protein mutants to high temperature strongly increases their haploid induction efficiency.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Haploidia , Temperatura , Centrômero/genética , Cinetocoros
4.
J Exp Bot ; 72(8): 3012-3027, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502451

RESUMO

Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes.


Assuntos
Brassica rapa , Recombinação Homóloga , Meiose , Brassica rapa/genética , Pareamento Cromossômico , Proteínas de Ligação a DNA/genética , Meiose/genética , Melhoramento Vegetal , Complexo Sinaptonêmico/genética
5.
Methods Mol Biol ; 2061: 381-402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583674

RESUMO

Here, we describe a protocol for in planta delivery of chemical compounds into meiocytes of different barley genotypes not impacting plant fertility allowing to harvest seeds from treated plants. Compound uptake into meiocytes is assessed by determining 5-ethynyl-2'-deoxyuridine (EdU) incorporation. Similar to EdU, other compounds being soluble in an aqueous solution can be delivered in planta before/during meiosis to decipher their impact on meiosis and meiotic recombination.We give practical advice on how to deliver EdU as compound example (delivery via injection or needle and thread, addition of detergents or surfactants to increase compound uptake), how in planta compound delivery can be established for your plant material under specific growing conditions, how to generate and characterize barley hybrid plants, and how to conduct a meiotic cytological study of (treated) barley plants.


Assuntos
Hordeum/genética , Meiose/genética , Recombinação Genética , Sementes/genética , Alelos , Cromossomos de Plantas , Análise Citogenética , Imunofluorescência , Hibridização Genética , Fenótipo
6.
Plant J ; 93(1): 17-33, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29078019

RESUMO

During meiosis, the formation of crossovers (COs) generates genetic variation and provides physical links that are essential for accurate chromosome segregation. COs occur in the context of a proteinaceous chromosome axis. The transcriptomes and proteomes of anthers and meiocytes comprise several thousand genes and proteins, but because of the level of complexity relatively few have been functionally characterized. Our understanding of the physical and functional interactions between meiotic proteins is also limited. Here we use affinity proteomics to analyse the proteins that are associated with the meiotic chromosome axis protein, ASY1, in Brassica oleracea anthers and meiocytes. We show that during prophase I ASY1 and its interacting partner, ASY3, are extensively phosphorylated, and we precisely assign phosphorylation sites. We identify 589 proteins that co-immunoprecipitate with ASY1. These correspond to 492 Arabidopsis orthologues, over 90% of which form a coherent protein-protein interaction (PPI) network containing known and candidate meiotic proteins, including proteins more usually associated with other cellular processes such as DNA replication and proteolysis. Mutant analysis confirms that affinity proteomics is a viable strategy for revealing previously unknown meiotic proteins, and we show how the PPI network can be used to prioritise candidates for analysis. Finally, we identify another axis-associated protein with a role in meiotic recombination. Data are available via ProteomeXchange with identifier PXD006042.


Assuntos
Brassica/fisiologia , Segregação de Cromossomos , Proteínas de Plantas/metabolismo , Proteoma , Proteômica , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/genética , Cromatografia Líquida , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Meiose , Prófase Meiótica I , Fosforilação , Proteínas de Plantas/genética , Mapeamento de Interação de Proteínas , Alinhamento de Sequência
7.
Front Plant Sci ; 6: 913, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579160

RESUMO

The centromere, visible as the primary constriction of condensed metaphase chromosomes, is a defined chromosomal locus essential for genome stability. It mediates transient assembly of a multi-protein complex, the kinetochore, which enables interaction with spindle fibers and thus faithful segregation of the genetic information during nuclear divisions. Centromeric DNA varies in extent and sequence composition among organisms, but a common feature of almost all active eukaryotic centromeres is the presence of the centromeric histone H3 variant cenH3 (a.k.a. CENP-A). These typical centromere features apply to most studied species. However, a number of species display "atypical" centromeres, such as holocentromeres (centromere extension along almost the entire chromatid length) or neocentromeres (ectopic centromere activity). In this review, we provide an overview of different atypical centromere types found in plants including holocentromeres, de novo formed centromeres and terminal neocentromeres as well as di-, tri- and metapolycentromeres (more than one centromere per chromosomes). We discuss their specific and common features and compare them to centromere types found in other eukaryotic species. We also highlight new insights into centromere biology gained in plants with atypical centromeres such as distinct mechanisms to define a holocentromere, specific adaptations in species with holocentromeres during meiosis or various scenarios leading to neocentromere formation.

8.
PLoS Genet ; 10(10): e1004674, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25330379

RESUMO

Meiotic crossovers (COs) shape genetic diversity by mixing homologous chromosomes at each generation. CO distribution is a highly regulated process. CO assurance forces the occurrence of at least one obligatory CO per chromosome pair, CO homeostasis smoothes out the number of COs when faced with variation in precursor number and CO interference keeps multiple COs away from each other along a chromosome. In several organisms, it has been shown that cytoskeleton forces are transduced to the meiotic nucleus via KASH- and SUN-domain proteins, to promote chromosome synapsis and recombination. Here we show that the Arabidopsis kinesin AtPSS1 plays a major role in chromosome synapsis and regulation of CO distribution. In Atpss1 meiotic cells, chromosome axes and DNA double strand breaks (DSBs) appear to form normally but only a variable portion of the genome synapses and is competent for CO formation. Some chromosomes fail to form the obligatory CO, while there is an increased CO density in competent regions. However, the total number of COs per cell is unaffected. We further show that the kinesin motor domain of AtPSS1 is required for its meiotic function, and that AtPSS1 interacts directly with WIP1 and WIP2, two KASH-domain proteins. Finally, meiocytes missing AtPSS1 and/or SUN proteins show similar meiotic defects suggesting that AtPSS1 and SUNs act in the same pathway. This suggests that forces produced by the AtPSS1 kinesin and transduced by WIPs/SUNs, are required to authorize complete synapsis and regulate maturation of recombination intermediates into COs. We suggest that a form of homeostasis applies, which maintains the total number of COs per cell even if only a part of the genome is competent for CO formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Pareamento Cromossômico , Cinesinas/metabolismo , Meiose , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Mutação
9.
Genome ; 54(7): 555-64, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21751868

RESUMO

We used rye-specific repetitive DNA sequences in fluorescence in situ hybridization (FISH) to paint the rye genome and to identify rye DNA in a wheat background. A 592 bp fragment from the rye-specific dispersed repetitive family R173 (named UCM600) was cloned and used as a FISH probe. UCM600 is dispersed over the seven rye chromosomes, being absent from the pericentromeric and subtelomeric regions. A similar pattern of distribution was also observed on the rye B chromosomes, but with weaker signals. The FISH hybridization patterns using UCM600 as probe were comparable with those obtained with the genomic in situ hybridization (GISH) procedure. There were, however, sharper signals and less background with FISH. UCM600 was combined with the rye-specific sequences Bilby and pSc200 to obtain a more complete painting. With these probes, the rye chromosomes were labeled with distinctive patterns; thus, allowing the rye cultivar 'Imperial' to be karyotyped. It was also possible to distinguish rye chromosomes in triticale and alien rye chromatin in wheat-rye addition and translocation lines. The distribution of UCM600 was similar in cultivated rye and in the wild Secale species Secale vavilovii Grossh., Secale sylvestre Host, and Secale africanum Stapf. Thus, UCM600 can be used to detect Secale DNA introgressed from wild species in a wheat background.


Assuntos
Genoma de Planta/genética , Secale/genética , Sequência de Bases , Cromossomos de Plantas/genética , Clonagem Molecular , Genes de Plantas , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA