RESUMO
We tested the idea that functional trade-offs that underlie species tolerance to drought-driven shifts in community composition via their effects on demographic processes and subsequently on shifts in species' abundance. Using data from 298 tree species from tropical dry forests during the extreme ENSO-2015, we scaled-up the effects of trait trade-offs from individuals to communities. Conservative wood and leaf traits favoured slow tree growth, increased tree survival and positively impacted species abundance and dominance at the community-level. Safe hydraulic traits, on the other hand, were related to demography but did not affect species abundance and communities. The persistent effects of the conservative-acquisitive trade-off across organizational levels is promising for generalization and predictability of tree communities. However, the safety-efficient trade-off showed more intricate effects on performance. Our results demonstrated the complex pathways in which traits scale up to communities, highlighting the importance of considering a wide range of traits and performance processes.
Assuntos
Secas , Clima Tropical , Humanos , Florestas , Árvores/fisiologia , Madeira , Folhas de PlantaRESUMO
Extreme drought events have negative effects on forest diversity and functioning. At the species level, however, these effects are still unclear, as species vary in their response to drought through specific functional trait combinations. We used long-term demographic records of 21,821 trees and extensive databases of traits to understand the responses of 338 tropical dry forests tree species to ENSO2015 , the driest event in decades in Northern South America. Functional differences between species were related to the hydraulic safety-efficiency trade-off, but unexpectedly, dominant species were characterised by high investment in leaf and wood tissues regardless of their leaf phenological habit. Despite broad functional trait combinations, tree mortality was more widespread in the functional space than tree growth, where less adapted species showed more negative net biomass balances. Our results suggest that if dry conditions increase in this ecosystem, ecological functionality and biomass gain would be reduced.
Assuntos
Secas , Clima Tropical , Ecossistema , Florestas , América do Norte , Folhas de Planta , Árvores , ÁguaRESUMO
Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.