Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Autism Res ; 16(10): 1946-1962, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548142

RESUMO

Distinct empathy deficits are often described in patients with conduct disorder (CD) and autism spectrum disorder (ASD) yet their neural underpinnings and the influence of comorbid Callous-Unemotional (CU) traits are unclear. This study compares the cognitive (CE) and affective empathy (AE) abilities of youth with CD and ASD, their potential neuroanatomical correlates, and the influence of CU traits on empathy. Adolescents and parents/caregivers completed empathy questionnaires (N = 148 adolescents, mean age = 15.16 years) and T1 weighted images were obtained from a subsample (N = 130). Group differences in empathy and the influence of CU traits were investigated using Bayesian analyses and Voxel-Based Morphometry with Threshold-Free Cluster Enhancement focusing on regions involved in AE (insula, amygdala, inferior frontal gyrus and cingulate cortex) and CE processes (ventromedial prefrontal cortex, temporoparietal junction, superior temporal gyrus, and precuneus). The ASD group showed lower parent-reported AE and CE scores and lower self-reported CE scores while the CD group showed lower parent-reported CE scores than controls. When accounting for the influence of CU traits no AE deficits in ASD and CE deficits in CD were found, but CE deficits in ASD remained. Across all participants, CU traits were negatively associated with gray matter volumes in anterior cingulate which extends into the mid cingulate, ventromedial prefrontal cortex, and precuneus. Thus, although co-occurring CU traits have been linked to global empathy deficits in reports and underlying brain structures, its influence on empathy aspects might be disorder-specific. Investigating the subdimensions of empathy may therefore help to identify disorder-specific empathy deficits.

2.
Front Psychiatry ; 14: 1101064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37441149

RESUMO

Aims: Heart rate variability (HRV) measures have been suggested in healthy individuals as a potential index of self-regulation skills, which include both cognitive and emotion regulation aspects. Studies in patients with a range of psychiatric disorders have however mostly focused on the potential association between abnormally low HRV at rest and specifically emotion regulation difficulties. Emotion regulation deficits have been reported in patients with Conduct Disorder (CD) however, the association between these emotion regulation deficits and HRV measures has yet to be fully understood. This study investigates (i) the specificity of the association between HRV and emotion regulation skills in adolescents with and without CD and (ii) the association between HRV and grey matter brain volumes in key areas of the central autonomic network which are involved in self-regulation processes, such as insula, lateral/medial prefrontal cortices or amygdala. Methods: Respiratory sinus arrhythmia (RSA) measures of HRV were collected from adolescents aged between 9-18 years (693 CD (427F)/753 typically developing youth (TD) (500F)), as part of a European multi-site project (FemNAT-CD). The Inverse Efficiency Score, a speed-accuracy trade-off measure, was calculated to assess emotion and cognitive regulation abilities during an Emotional Go/NoGo task. The association between RSA and task performance was tested using multilevel regression models. T1-weighted structural MRI data were included for a subset of 577 participants (257 CD (125F); 320 TD (186F)). The CerebroMatic toolbox was used to create customised Tissue Probability Maps and DARTEL templates, and CAT12 to segment brain images, followed by a 2 × 2 (sex × group) full factorial ANOVA with RSA as regressor of interest. Results: There were no significant associations between RSA and task performance, neither during emotion regulation nor during cognitive regulation trials. RSA was however positively correlated with regional grey matter volume in the left insula (pFWE = 0.011) across all subjects. Conclusion: RSA was related to increased grey matter volume in the left insula across all subjects. Our results thus suggest that low RSA at rest might be a contributing or predisposing factor for potential self-regulation difficulties. Given the insula's role in both emotional and cognitive regulation processes, these brain structural differences might impact either of those.

3.
Psychopharmacology (Berl) ; 240(10): 2045-2060, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37500785

RESUMO

RATIONALE: Working memory deficits and associated neurofunctional abnormalities are frequently reported in attention-deficit/hyperactivity disorder (ADHD). Methylphenidate and atomoxetine improve working memory performance and increase activation of regions under-functioning in ADHD. Additionally, methylphenidate has been observed to modulate functional networks involved in working memory. No research, however, has examined the effects of atomoxetine or compared the two drugs. OBJECTIVES: This study aimed to test methylphenidate and atomoxetine effects on functional connectivity during working memory in boys with ADHD. METHODS: We tested comparative effects of methylphenidate and atomoxetine on functional connectivity during the n-back task in 19 medication-naïve boys with ADHD (10-15 years old) relative to placebo and assessed potential normalisation effects of brain dysfunctions under placebo relative to 20 age-matched neurotypical boys. Patients were scanned in a randomised, double-blind, cross-over design under single doses of methylphenidate, atomoxetine, and placebo. Controls were scanned once, unmedicated. RESULTS: Patients under placebo showed abnormally increased connectivity between right superior parietal gyrus (rSPG) and left central operculum/insula. This hyperconnectivity was not observed when patients were under methylphenidate or atomoxetine. Furthermore, under methylphenidate, patients showed increased connectivity relative to controls between right middle frontal gyrus (rMFG) and cingulo-temporo-parietal and striato-thalamic regions, and between rSPG and cingulo-parietal areas. Interrogating these networks within patients revealed increased connectivity between both rMFG and rSPG and right supramarginal gyrus under methylphenidate relative to placebo. Nonetheless, no differences across drug conditions were observed within patients at whole brain level. No drug effects on performance were observed. CONCLUSIONS: This study shows shared modulating effects of methylphenidate and atomoxetine on parieto-insular connectivity but exclusive effects of methylphenidate on connectivity increases in fronto-temporo-parietal and fronto-striato-thalamic networks in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Masculino , Humanos , Criança , Adolescente , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/uso terapêutico , Encéfalo , Lobo Frontal , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Imageamento por Ressonância Magnética
4.
Dev Sci ; 26(1): e13252, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35184350

RESUMO

The potential benefits and mechanistic effects of working memory training (WMT) in children are the subject of much research and debate. We show that after five weeks of school-based, adaptive WMT 6-9 year-old primary school children had greater activity in prefrontal and striatal brain regions, higher task accuracy, and reduced intra-individual variability in response times compared to controls. Using a sequential sampling decision model, we demonstrate that this reduction in intra-individual variability can be explained by changes to the evidence accumulation rates and thresholds. Critically, intra-individual variability is useful in quantifying the immediate impact of cognitive training interventions, being a better predictor of academic skills and well-being 6-12 months after the end of training than task accuracy. Taken together, our results suggest that attention control is the initial mechanism that leads to the long-run benefits from adaptive WMT. Selective and sustained attention abilities may serve as a scaffold for subsequent changes in higher cognitive processes, academic skills, and general well-being. Furthermore, these results highlight that the selection of outcome measures and the timing of the assessments play a crucial role in detecting training efficacy. Thus, evaluating intra-individual variability, during or directly after training could allow for the early tailoring of training interventions in terms of duration or content to maximise their impact.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Análise e Desempenho de Tarefas , Criança , Humanos , Treino Cognitivo , Memória de Curto Prazo/fisiologia , Atenção
5.
Front Psychiatry ; 13: 866926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978845

RESUMO

Peer victimization is very common during late childhood and adolescence. Despite the relatively reduced number of studies, the neurobiological underpinnings of the negative impact of peer victimization experiences have received increasing attention in recent years. The present selective review summarizes the most recent available evidence and provides a general overview of the impact of peer victimization experiences on social processing and decision-making at the neurobiological level, highlighting the most pressing areas requiring further research. Three key cognitive areas show a clear negative impact of peer victimization and bullying experiences: social valuation processing, reward and reinforcement learning and self-regulation processes. Victims show enhanced activation in key regions of the limbic system including the amygdala, rostral and dorsal anterior cingulate cortices, suggestive of enhanced sensitivity to social stimuli. They also show enhanced recruitment of lateral prefrontal regions crucially involved in cognitive and emotional regulation processes, and abnormal reward-related striatal function. The presence of psychopathology is a complex factor, increased as a consequence of peer victimization, but that also constitutes vulnerability to such experiences.

6.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33748971

RESUMO

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Núcleo Caudado , Criança , Humanos , Imageamento por Ressonância Magnética
7.
Am J Psychiatry ; 177(9): 834-843, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32539527

RESUMO

OBJECTIVE: Attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. The authors sought to directly compare these disorders using structural brain imaging data from ENIGMA consortium data. METHODS: Structural T1-weighted whole-brain MRI data from healthy control subjects (N=5,827) and from patients with ADHD (N=2,271), ASD (N=1,777), and OCD (N=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. The authors examined subcortical volume, cortical thickness, and cortical surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults, using linear mixed-effects models adjusting for age, sex, and site (and intracranial volume for subcortical and surface area measures). RESULTS: No shared differences were found among all three disorders, and shared differences between any two disorders did not survive correction for multiple comparisons. Children with ADHD compared with those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller intracranial volume than control subjects and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared with adult control subjects and other clinical groups. No OCD-specific differences were observed across different age groups and surface area differences among all disorders in childhood and adulthood. CONCLUSIONS: The study findings suggest robust but subtle differences across different age groups among ADHD, ASD, and OCD. ADHD-specific intracranial volume and hippocampal differences in children and adolescents, and ASD-specific cortical thickness differences in the frontal cortex in adults, support previous work emphasizing structural brain differences in these disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Cérebro , Neuroimagem/métodos , Transtorno Obsessivo-Compulsivo , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Cérebro/diagnóstico por imagem , Cérebro/patologia , Cérebro/fisiopatologia , Criança , Feminino , Desenvolvimento Humano/fisiologia , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/psicologia , Tamanho do Órgão , Psicopatologia , Relatório de Pesquisa , Análise de Sistemas
8.
Eur Neuropsychopharmacol ; 29(10): 1102-1116, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358436

RESUMO

Problems with sustained attention are a key clinical feature of Attention Deficit/Hyperactivity Disorder (ADHD) which also manifests in poor performance and abnormal fronto-striato-parietal activation during sustained attention. Methylphenidate and atomoxetine improve attention functions and upregulate abnormal fronto-cortical activation during executive function tasks in ADHD patients. Despite this, no functional Magnetic Resonance Imaging (fMRI) study has compared the effects of methylphenidate and atomoxetine on the neurofunctional substrates of sustained attention in ADHD. This randomised, double-blind, placebo-controlled, cross-over study investigated the comparative normalisation effects of methylphenidate and atomoxetine on fMRI correlates and performance in 14 ADHD adolescents relative to 27 age-matched healthy controls during a parametric sustained attention/vigilance task with progressively increasing load of sustained attention. ADHD patients were scanned three times under a single clinical dose of either methylphenidate, atomoxetine, or placebo in pseudo-randomised order. Healthy controls were scanned once and compared to patients under each drug condition to test for potential drug-normalisation effects. Relative to controls, ADHD boys under placebo were impaired in performance and had underactivation in predominantly right-hemispheric fronto-parietal, and striato-thalamic regions. Both drugs normalised all underactivations, while only methylphenidate improved performance deficits. Within patients, methylphenidate had a drug-specific effect of upregulating left ventrolateral prefrontal/superior temporal activation relative to placebo and atomoxetine, while both drugs increased activation of right middle/superior temporal cortex, posterior cingulate, and precuneus relative to placebo. The study shows shared normalisation effects of methylphenidate and atomoxetine on fronto-striato-thalamo-parietal dysfunction in ADHD during sustained attention but a drug-specific upregulation effects of methylphenidate on ventral fronto-temporal regions.


Assuntos
Cloridrato de Atomoxetina/farmacologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Atenção/fisiologia , Encéfalo/fisiopatologia , Metilfenidato/farmacologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiopatologia , Adolescente , Inibidores da Captação Adrenérgica/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Criança , Estudos Cross-Over , Método Duplo-Cego , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos
9.
Soc Cogn Affect Neurosci ; 14(3): 305-317, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30690563

RESUMO

Incentives are primary determinants of if and how well an organism will perform a given behavior. Here, we examined how incentive valence and magnitude influence task switching, a critical cognitive control process, and test the predictions that the anterior cingulate cortex (ACC) and the ventral striatum (vStr) function as key nodes linking motivation and control systems in the brain. Our results indicate that reward and punishment incentives have both common and distinct effects on cognitive control at the behavioral and neurobiological levels. For example, reward incentives led to greater activity in the ACC during the engagement of control relative to punishments. Furthermore, the neural responses to reward and punishment differed as a function of individual sensitivity to each incentive valence. Functional connectivity analyses suggest a role for vStr in signaling motivational value during cognitive control and as a potential link between motivation and control networks. Overall, our findings suggest that similar changes in observed behavior (e.g. response accuracy) under reward and punishment incentives are mediated by, at least partially, distinct neurobiological substrates.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Motivação/fisiologia , Punição , Recompensa , Adulto , Mapeamento Encefálico , Feminino , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Estriado Ventral/fisiologia
10.
Neuroimage Clin ; 15: 181-193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529874

RESUMO

Patients with Attention-Deficit/Hyperactivity Disorder (ADHD) and obsessive/compulsive disorder (OCD) share problems with sustained attention, and are proposed to share deficits in switching between default mode and task positive networks. The aim of this study was to investigate shared and disorder-specific brain activation abnormalities during sustained attention in the two disorders. Twenty boys with ADHD, 20 boys with OCD and 20 age-matched healthy controls aged between 12 and 18 years completed a functional magnetic resonance imaging (fMRI) version of a parametrically modulated sustained attention task with a progressively increasing sustained attention load. Performance and brain activation were compared between groups. Only ADHD patients were impaired in performance. Group by sustained attention load interaction effects showed that OCD patients had disorder-specific middle anterior cingulate underactivation relative to controls and ADHD patients, while ADHD patients showed disorder-specific underactivation in left dorsolateral prefrontal cortex/dorsal inferior frontal gyrus (IFG). ADHD and OCD patients shared left insula/ventral IFG underactivation and increased activation in posterior default mode network relative to controls, but had disorder-specific overactivation in anterior default mode regions, in dorsal anterior cingulate for ADHD and in anterior ventromedial prefrontal cortex for OCD. In sum, ADHD and OCD patients showed mostly disorder-specific patterns of brain abnormalities in both task positive salience/ventral attention networks with lateral frontal deficits in ADHD and middle ACC deficits in OCD, as well as in their deactivation patterns in medial frontal DMN regions. The findings suggest that attention performance in the two disorders is underpinned by disorder-specific activation patterns.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Atenção/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Criança , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia
11.
Lancet Psychiatry ; 4(4): 310-319, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28219628

RESUMO

BACKGROUND: Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis. METHODS: In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0·0156. FINDINGS: Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4-63 years). The volumes of the accumbens (Cohen's d=-0·15), amygdala (d=-0·19), caudate (d=-0·11), hippocampus (d=-0·11), putamen (d=-0·14), and intracranial volume (d=-0·10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0·95) and thalamus (p=0·39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children (<15 years) versus adults (>21 years): in the accumbens (Cohen's d=-0·19 vs -0·10), amygdala (d=-0·18 vs -0·14), caudate (d=-0·13 vs -0·07), hippocampus (d=-0·12 vs -0·06), putamen (d=-0·18 vs -0·08), and intracranial volume (d=-0·14 vs 0·01). There was no difference between children and adults for the pallidum (p=0·79) or thalamus (p=0·89). Case-control differences in adults were non-significant (all p>0·03). Psychostimulant medication use (all p>0·15) or symptom scores (all p>0·02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p>0·5). INTERPRETATION: With the largest dataset to date, we add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD. We extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. Lifespan analyses suggest that, in the absence of well powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of ages provides a means to generate hypotheses about lifespan trajectories in brain phenotypes. FUNDING: National Institutes of Health.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Encéfalo/patologia , Imageamento por Ressonância Magnética , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Modelos Lineares , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neuroimagem , Adulto Jovem
12.
J Am Acad Child Adolesc Psychiatry ; 53(5): 569-78.e1, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24745956

RESUMO

OBJECTIVE: Attention-deficit/hyperactivity disorder (ADHD) is currently diagnosed on the basis of subjective measures, despite evidence for multi-systemic structural and neurofunctional deficits. A consistently observed neurofunctional deficit is in fine-temporal discrimination (TD). The aim of this proof-of-concept study was to examine the feasibility of distinguishing patients with ADHD from controls using multivariate pattern recognition analyses of functional magnetic resonance imaging (fMRI) data of TD. METHOD: A total of 20 medication-naive adolescent male patients with ADHD and 20 age-matched healthy controls underwent fMRI while performing a TD task. The fMRI data were analyzed with Gaussian process classifiers to predict individual ADHD diagnosis based on brain activation patterns. RESULTS: The pattern of brain activation correctly classified up to 80% of patients and 70% of controls, achieving an overall classification accuracy of 75%. The distributed activation networks with the highest delineation between patients and controls corresponded to a distributed network of brain regions involved in TD and typically compromised in ADHD, including inferior and dorsolateral prefrontal, insula, and parietal cortices, and the basal ganglia, anterior cingulate, and cerebellum. These regions overlapped with areas of reduced activation in patients with ADHD relative to controls in a univariate analysis, suggesting that these are dysfunctional regions. CONCLUSIONS: We show evidence that pattern recognition analyses combined with fMRI using a disorder-sensitive task such as timing have potential in providing objective diagnostic neuroimaging biomarkers of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Discriminação Psicológica/fisiologia , Imageamento por Ressonância Magnética , Percepção do Tempo/fisiologia , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Criança , Estudos de Viabilidade , Humanos , Masculino , Rede Nervosa/fisiopatologia , Valor Preditivo dos Testes
13.
Biol Psychiatry ; 76(8): 616-28, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24314347

RESUMO

BACKGROUND: Psychostimulant medication, most commonly the catecholamine agonist methylphenidate, is the most effective treatment for attention-deficit/hyperactivity disorder (ADHD). However, relatively little is known on the mechanisms of action. Acute effects on brain function can elucidate underlying neurocognitive effects. We tested methylphenidate effects relative to placebo in functional magnetic resonance imaging (fMRI) during three disorder-relevant tasks in medication-naïve ADHD adolescents. In addition, we conducted a systematic review and meta-analysis of the fMRI findings of acute stimulant effects on ADHD brain function. METHODS: The fMRI study compared 20 adolescents with ADHD under either placebo or methylphenidate in a randomized controlled trial while performing stop, working memory, and time discrimination tasks. The meta-analysis was conducted searching PubMed, ScienceDirect, Web of Knowledge, Google Scholar, and Scopus databases. Peak coordinates of clusters of significant effects of stimulant medication relative to placebo or off medication were extracted for each study. RESULTS: The fMRI analysis showed that methylphenidate significantly enhanced activation in bilateral inferior frontal cortex (IFC)/insula during inhibition and time discrimination but had no effect on working memory networks. The meta-analysis, including 14 fMRI datasets and 212 children with ADHD, showed that stimulants most consistently enhanced right IFC/insula activation, which also remained for a subgroup analysis of methylphenidate effects alone. A more lenient threshold also revealed increased putamen activation. CONCLUSIONS: Psychostimulants most consistently increase right IFC/insula activation, which are key areas of cognitive control and also the most replicated neurocognitive dysfunction in ADHD. These neurocognitive effects may underlie their positive clinical effects.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/terapia , Encéfalo , Estimulação Encefálica Profunda/métodos , Adolescente , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Inibição Psicológica , Imageamento por Ressonância Magnética , Masculino , Metanálise como Assunto , Metilfenidato/uso terapêutico , Testes Neuropsicológicos , Oxigênio/sangue , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Cereb Cortex ; 24(1): 174-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23048018

RESUMO

The stimulant methylphenidate (MPX) and the nonstimulant atomoxetine (ATX) are the most commonly prescribed medications for attention deficit hyperactivity disorder (ADHD). However, no functional magnetic resonance imaging (fMRI) study has as yet investigated the effects of ATX on inhibitory or any other brain function in ADHD patients or compared its effects with those of MPX. A randomized, double-blind, placebo-controlled, crossover pharmacological design was used to compare the neurofunctional effects of single doses of MPX, ATX, and placebo during a stop task, combined with fMRI within 19 medication-naive ADHD boys, and their potential normalization effects relative to 29 age-matched healthy boys. Compared with controls, ADHD boys under placebo showed bilateral ventrolateral prefrontal, middle temporal, and cerebellar underactivation. Within patients, MPX relative to ATX and placebo significantly upregulated right ventrolateral prefrontal activation, which correlated with enhanced inhibitory capacity. Relative to controls, both drugs significantly normalized the left ventrolateral prefrontal underactivation observed under placebo, while MPX had a drug-specific effect of normalizing right ventrolateral prefrontal and cerebellar underactivation observed under both placebo and ATX. The findings show shared and drug-specific effects of MPX and ATX on performance and brain activation during inhibitory control in ADHD patients with superior upregulation and normalization effects of MPX.


Assuntos
Inibidores da Captação Adrenérgica/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/fisiopatologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Inibição Psicológica , Metilfenidato/uso terapêutico , Propilaminas/uso terapêutico , Adolescente , Análise de Variância , Cloridrato de Atomoxetina , Encéfalo/efeitos dos fármacos , Estudos de Casos e Controles , Catecolaminas/metabolismo , Criança , Estudos Cross-Over , Interpretação Estatística de Dados , Método Duplo-Cego , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Movimento/fisiologia , Testes Neuropsicológicos , Córtex Pré-Frontal/fisiopatologia , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia
15.
Hum Brain Mapp ; 35(7): 3083-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24123508

RESUMO

The diagnosis of Attention Deficit Hyperactivity Disorder (ADHD) is based on subjective measures despite evidence for multisystemic structural and functional deficits. ADHD patients have consistent neurofunctional deficits in motor response inhibition. The aim of this study was to apply pattern classification to task-based functional magnetic resonance imaging (fMRI) of inhibition, to accurately predict the diagnostic status of ADHD. Thirty adolescent ADHD and thirty age-matched healthy boys underwent fMRI while performing a Stop task. fMRI data were analyzed with Gaussian process classifiers (GPC), a machine learning approach, to predict individual ADHD diagnosis based on task-based activation patterns. Traditional univariate case-control analyses were also performed to replicate previous findings in a relatively large dataset. The pattern of brain activation correctly classified up to 90% of patients and 63% of controls, achieving an overall classification accuracy of 77%. The regions of the discriminative network most predictive of controls included later developing lateral prefrontal, striatal, and temporo-parietal areas that mediate inhibition, while regions most predictive of ADHD were in earlier developing ventromedial fronto-limbic regions, which furthermore correlated with symptom severity. Univariate analysis showed reduced activation in ADHD in bilateral ventrolateral prefrontal, striatal, and temporo-parietal regions that overlapped with areas predictive of controls, suggesting the latter are dysfunctional areas in ADHD. We show that significant individual classification of ADHD patients of 77% can be achieved using whole brain pattern analysis of task-based fMRI inhibition data, suggesting that multivariate pattern recognition analyses of inhibition networks can provide objective diagnostic neuroimaging biomarkers of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Encéfalo/fisiopatologia , Inibição Psicológica , Doenças do Sistema Nervoso/etiologia , Adolescente , Análise de Variância , Encéfalo/irrigação sanguínea , Criança , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Distribuição Normal , Oxigênio/sangue , Tempo de Reação
16.
Biol Psychiatry ; 74(8): 615-22, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23731741

RESUMO

BACKGROUND: The catecholamine agonists methylphenidate and atomoxetine effectively treat attention-deficit/hyperactivity disorder (ADHD). Furthermore, dopamine agonists have shown to improve time estimation in ADHD, a core cognitive deficit. However, few have compared the effects of methylphenidate and atomoxetine on brain function in ADHD, and none during time estimation. Using single dose challenges, we investigated shared and drug-specific effects in ADHD adolescents on the neural substrates of time discrimination (TD). METHODS: Twenty ADHD adolescent male subjects were compared in a randomized double-blind cross-over design after single doses of methylphenidate, atomoxetine, and placebo in functional magnetic resonance imaging during TD. Normalization effects were assessed by comparing brain activation under each drug condition with that of 20 healthy age-matched control subjects. RESULTS: Relative to control subjects, patients under placebo showed TD deficits and reduced activation of ventrolateral prefrontal cortex (VLPFC)/insula, inferior frontal cortex, and supplementary motor area. Performance differences were normalized only by methylphenidate, relative to both atomoxetine and placebo. Both medications, however, significantly upregulated right VLPFC/insula activation within patients and normalized its underactivation in ADHD boys under placebo relative to control subjects. The supplementary motor area and inferior frontal cortex activation differences that were observed under placebo were reduced by methylphenidate and atomoxetine, respectively, but neither survived rigorous testing for normalization. CONCLUSIONS: While only methylphenidate had a drug-specific effect of improving TD performance deficits, both drugs significantly upregulated and normalized right VLPFC underactivation in ADHD boys under placebo relative to control subjects, suggesting shared effects of stimulants and nonstimulants on a key prefrontal dysfunction during timing.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Metilfenidato/uso terapêutico , Propilaminas/uso terapêutico , Adolescente , Cloridrato de Atomoxetina , Mapeamento Encefálico , Estudos Cross-Over , Discriminação Psicológica , Método Duplo-Cego , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Fatores de Tempo
17.
PLoS One ; 8(5): e63660, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696841

RESUMO

OBJECTIVE: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder, but diagnosed by subjective clinical and rating measures. The study's aim was to apply Gaussian process classification (GPC) to grey matter (GM) volumetric data, to assess whether individual ADHD adolescents can be accurately differentiated from healthy controls based on objective, brain structure measures and whether this is disorder-specific relative to autism spectrum disorder (ASD). METHOD: Twenty-nine adolescent ADHD boys and 29 age-matched healthy and 19 boys with ASD were scanned. GPC was applied to make disorder-specific predictions of ADHD diagnostic status based on individual brain structure patterns. In addition, voxel-based morphometry (VBM) analysis tested for traditional univariate group level differences in GM. RESULTS: The pattern of GM correctly classified 75.9% of patients and 82.8% of controls, achieving an overall classification accuracy of 79.3%. Furthermore, classification was disorder-specific relative to ASD. The discriminating GM patterns showed higher classification weights for ADHD in earlier developing ventrolateral/premotor fronto-temporo-limbic and stronger classification weights for healthy controls in later developing dorsolateral fronto-striato-parieto-cerebellar networks. Several regions were also decreased in GM in ADHD relative to healthy controls in the univariate VBM analysis, suggesting they are GM deficit areas. CONCLUSIONS: The study provides evidence that pattern recognition analysis can provide significant individual diagnostic classification of ADHD patients and healthy controls based on distributed GM patterns with 79.3% accuracy and that this is disorder-specific relative to ASD. Findings are a promising first step towards finding an objective differential diagnostic tool based on brain imaging measures to aid with the subjective clinical diagnosis of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno Autístico/diagnóstico , Imageamento por Ressonância Magnética/métodos , Adolescente , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Reconhecimento Fisiológico de Modelo/fisiologia
18.
Cortex ; 48(2): 194-215, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21575934

RESUMO

Attention Deficit Hyperactivity Disorder (ADHD) has long been associated with abnormalities in frontal brain regions. In this paper we review the current structural and functional imaging evidence for abnormalities in children and adults with ADHD in fronto-striatal, fronto-parieto-temporal, fronto-cerebellar and fronto-limbic regions and networks. While the imaging studies in children with ADHD are more numerous and consistent, an increasing number of studies suggests that these structural and functional abnormalities in fronto-cortical and fronto-subcortical networks persist into adulthood, despite a relative symptomatic improvement in the adult form of the disorder. We furthermore present new data that support the notion of a persistence of neurofunctional deficits in adults with ADHD during attention and motivation functions. We show that a group of medication-naïve young adults with ADHD behaviours who were followed up 20 years from a childhood ADHD diagnosis show dysfunctions in lateral fronto-striato-parietal regions relative to controls during sustained attention, as well as in ventromedial orbitofrontal regions during reward, suggesting dysfunctions in cognitive-attentional as well as motivational neural networks. The lateral fronto-striatal deficit findings, furthermore, were strikingly similar to those we have previously observed in children with ADHD during the same task, reinforcing the notion of persistence of fronto-striatal dysfunctions in adult ADHD. The ventromedial orbitofrontal deficits, however, were associated with comorbid conduct disorder (CD), highlighting the potential confound of comorbid antisocial conditions on paralimbic brain deficits in ADHD. Our review supported by the new data therefore suggest that both adult and childhood ADHD are associated with brain abnormalities in fronto-cortical and fronto-subcortical systems that mediate the control of cognition and motivation. The brain deficits in ADHD therefore appear to be multi-systemic and to persist throughout the lifespan.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Atenção/fisiologia , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Motivação/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Criança , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Transtorno da Conduta/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Testes de Inteligência , Imageamento por Ressonância Magnética , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia , Recompensa
19.
Psychiatry Res ; 193(1): 17-27, 2011 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-21601434

RESUMO

Attention deficit hyperactivity disorder (ADHD) in medication-naïve children has been associated with reduced activation in inferior/medial prefrontal, striatal and parieto-temporal cortices during inhibitory control and attention allocation. Functional magnetic resonance imaging (fMRI) studies in adult ADHD, however, have been inconsistent and confounded by medication-history and the need for a retrospective diagnosis of childhood ADHD. We used fMRI combined with a Simon task that measured interference inhibition and controlled for and co-measured attention allocation to compare brain function in 11 medication-naïve adults with persistent inattentive/hyperactive behaviours, followed up from childhood ADHD, and 15 age-matched controls. Despite comparable task performance, patients showed reduced activation compared to controls in left orbital/medial frontal cortex and striatum during interference inhibition and in left lateral inferior/dorsolateral prefrontal cortex during attention allocation. Whole-brain regression analyses within patients showed a negative correlation between symptom severity and fronto-striatal, temporo-parietal and cerebellar brain activation. The findings demonstrate that the typical fronto-striatal dysfunction observed in children with ADHD during interference inhibition and attention allocation is also observed in adults grown up from childhood ADHD with persistent symptoms. Furthermore, they show that functional deficits in adult ADHD are not related to chronic stimulant medication given that this sample was medication-naive.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Cognição/fisiologia , Corpo Estriado/fisiopatologia , Lobo Frontal/fisiopatologia , Inibição Psicológica , Adulto , Análise de Variância , Mapeamento Encefálico , Estudos de Casos e Controles , Corpo Estriado/irrigação sanguínea , Lobo Frontal/irrigação sanguínea , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Testes Neuropsicológicos , Oxigênio/sangue , Desempenho Psicomotor/fisiologia
20.
Neuropsychopharmacology ; 36(8): 1575-86, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21451498

RESUMO

Youth with attention deficit hyperactivity disorder (ADHD) have deficits in interference inhibition, which can be improved with the indirect catecholamine agonist methylphenidate (MPH). Functional magnetic resonance imaging was used to investigate the effects of a single dose of MPH on brain activation during interference inhibition in medication-naïve ADHD boys. Medication-naïve boys with ADHD were scanned twice, in a randomized, double-blind design, under either a single clinical dose of MPH or placebo, while performing a Simon task that measures interference inhibition and controls for the oddball effect of low-frequency appearance of incongruent trials. Brain activation was compared within patients under either drug condition. To test for potential normalization effects of MPH, brain activation in ADHD patients under either drug condition was compared with that of healthy age-matched comparison boys. During incongruent trials compared with congruent-oddball trials, boys with ADHD under placebo relative to controls showed reduced brain activation in typical areas of interference inhibition, including right inferior prefrontal cortex, left striatum and thalamus, mid-cingulate/supplementary motor area, and left superior temporal lobe. MPH relative to placebo upregulated brain activation in right inferior prefrontal and premotor cortices. Under the MPH condition, patients relative to controls no longer showed the reduced activation in right inferior prefrontal and striato-thalamic regions. Effect size comparison, furthermore, showed that these normalization effects were significant. MPH significantly normalized the fronto-striatal underfunctioning in ADHD patients relative to controls during interference inhibition, but did not affect medial frontal or temporal dysfunction. MPH therefore appears to have a region-specific upregulation effect on fronto-striatal activation.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Corpo Estriado/metabolismo , Inibição Psicológica , Metilfenidato/farmacologia , Córtex Pré-Frontal/metabolismo , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Criança , Corpo Estriado/efeitos dos fármacos , Método Duplo-Cego , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA