Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 226(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326213

RESUMO

Climate change will increase the frequency and intensity of low-salinity (hyposalinity) events in coastal marine habitats. Sea urchins are dominant herbivores in these habitats and are generally intolerant of salinity fluctuations. Their adhesive tube feet are essential for survival, effecting secure attachment and locomotion in high wave energy habitats, yet little is known about how hyposalinity impacts their function. We exposed green sea urchins (Strongylocentrotus droebachiensis) to salinities ranging from ambient (32‰) to severe (14‰) and assessed tube feet coordination (righting response, locomotion) and adhesion [disc tenacity (force per unit area)]. Righting response, locomotion and disc tenacity decreased in response to hyposalinity. Severe reductions in coordinated tube foot activities occurred at higher salinities than those that affected adhesion. The results of this study suggest moderate hyposalinities (24-28‰) have little effect on S. droebachiensis dislodgement risk and survival post-dislodgment, while severe hyposalinity (below 24‰) likely reduces movement and prevents recovery from dislodgment.


Assuntos
Adesivos , Ouriços-do-Mar , Animais , Herbivoria , Locomoção
2.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35044457

RESUMO

Regenerating structures critical for survival provide excellent model systems for the study of phenotypic plasticity. These body components must regenerate their morphology and functionality quickly while subjected to different environmental stressors. Sea urchins live in high-energy environments where hydrodynamic conditions pose significant challenges. Adhesive tube feet provide secure attachment to the substratum but can be amputated by predation and hydrodynamic forces. Tube feet display functional and morphological plasticity in response to environmental conditions, but regeneration to their pre-amputation status has not been achieved under quiescent laboratory settings. In this study, we assessed the effect of turbulent water movement, periodic emersion and quiescent conditions on the regeneration process of tube foot morphology (length, disc area) and functionality (maximum disc tenacity, stem breaking force). Disc area showed significant plasticity in response to the treatments; when exposed to emersion and turbulent water movement, disc area was larger than that of tube feet regenerated in quiescent conditions. However, no treatment stimulated regeneration to pre-amputation sizes. Tube foot length was unaffected by treatments and remained shorter than non-amputated tube feet. Stem breaking force for amputated and non-amputated treatments increased in all cases when compared with pre-amputation values. Maximum tenacity (force per unit area) was similar among tube feet subjected to simulated field conditions and amputation treatments. Our results suggest a role of active plasticity of tube foot functional morphology in response to field-like conditions and demonstrate the plastic response of invertebrates to laboratory conditions.


Assuntos
Hidrodinâmica , Ouriços-do-Mar , Adesivos , Animais , Ouriços-do-Mar/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA