Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949382

RESUMO

Lung transplantation is hampered by the lack of suitable donors. Previously, donors that were thought to be marginal or inadequate were discarded. However, new and exciting technology, such as ex vivo lung perfusion (EVLP), offers lung transplant providers extended assessment for marginal donor allografts. This dynamic assessment platform has led to an increase in lung transplantation and has allowed providers to use donors that were previously discarded, thus expanding the donor pool. Current perfusion techniques use cellular or acellular perfusates, and both have distinct advantages and disadvantages. Perfusion composition is critical to maintaining a homeostatic environment, providing adequate metabolic support, decreasing inflammation and cellular death, and ultimately improving organ function. Perfusion solutions must contain sufficient protein concentration to maintain appropriate oncotic pressure. However, current perfusion solutions often lead to fluid extravasation through the pulmonary endothelium, resulting in inadvertent pulmonary edema and damage. Thus, it is necessary to develop novel perfusion solutions that prevent excessive damage while maintaining proper cellular homeostasis. Here, we describe the application of a polymerized human hemoglobin (PolyhHb)-based oxygen carrier as a perfusate and the protocol in which this perfusion solution can be tested in a model of rat EVLP. The goal of this study is to provide the lung transplant community with key information in designing and developing novel perfusion solutions, as well as the proper protocols to test them in clinically relevant translational transplant models.


Assuntos
Hemoglobinas , Transplante de Pulmão , Pulmão , Perfusão , Animais , Ratos , Transplante de Pulmão/métodos , Hemoglobinas/química , Perfusão/métodos , Pulmão/metabolismo , Humanos , Oxigênio/metabolismo , Substitutos Sanguíneos/farmacologia , Substitutos Sanguíneos/química , Masculino , Soluções para Preservação de Órgãos/química
2.
Biomed Pharmacother ; 176: 116789, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815289

RESUMO

The widespread adoption of high-calorie, high-fat, high-sucrose diets (HFHSD) has become a global health concern, particularly due to their association with cardiovascular diseases and metabolic disorders. These comorbidities increase susceptibility to severe outcomes from viral infections and trauma, with trauma-related incidents significantly contributing to global mortality rates. This context underscores the critical need for a reliable blood supply. Recent research has focused on high molecular weight (MW) polymerized human hemoglobin (PolyhHb) as a promising alternative to red blood cells (RBCs), showing encouraging outcomes in previous studies. Given the overlap of metabolic disorders and trauma-related health issues, it is crucial to assess the potential toxicity of PolyhHb transfusions, particularly in models that represent these vulnerable populations. This study evaluated the effects of PolyhHb exchange transfusion in guinea pigs that had developed metabolic disorders due to a 12-week HFHSD regimen. The guinea pigs, underwent a 20 % blood volume exchange transfusion with either PolyhHb or the lower molecular weight polymerized bovine hemoglobin, Oxyglobin. Results revealed that both PolyhHb and Oxyglobin transfusions led to liver damage, with a more pronounced effect observed in HFHSD-fed animals. Additionally, markers of cardiac dysfunction indicated signs of cardiac injury in both the HFHSD and normal diet groups following the Oxyglobin transfusion. This study highlights how pre-existing metabolic disorders can exacerbate the potential side effects of hemoglobin-based oxygen carriers (HBOCs). Importantly, the newer generation of high MW PolyhHb showed lower cardiac toxicity compared to the earlier generation low MW PolyhHb, known as Oxyglobin, even in models with pre-existing endothelial and metabolic challenges.


Assuntos
Doenças Cardiovasculares , Hemoglobinas , Doenças Metabólicas , Peso Molecular , Animais , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Cobaias , Masculino , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos , Humanos , Substitutos Sanguíneos/farmacologia
3.
ASAIO J ; 70(5): 442-450, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266069

RESUMO

Normothermic ex vivo lung perfusion (EVLP) can resuscitate marginal lung allografts to increase organs available for transplantation. During normothermic perfusion, cellular metabolism is more active compared with subnormothermic perfusion, creating a need for an oxygen (O 2 ) carrier in the perfusate. As an O 2 carrier, red blood cells (RBCs) are a scarce resource and are susceptible to hemolysis in perfusion circuits, thus releasing cell-free hemoglobin (Hb), which can extravasate into the tissue space, thus promoting scavenging of nitric oxide (NO) and oxidative tissue damage. Fortunately, polymerized human Hb (PolyhHb) represents a synthetic O 2 carrier with a larger molecular diameter compared with Hb, preventing extravasation, and limiting adverse reactions. In this study, a next-generation PolyhHb-based perfusate was compared to both RBC and asanguinous perfusates in a rat EVLP model. During EVLP, the pulmonary arterial pressure and pulmonary vascular resistance were both significantly higher in lungs perfused with RBCs, which is consistent with RBC hemolysis. Lungs perfused with PolyhHb demonstrated greater oxygenation than those perfused with RBCs. Post-EVLP analysis revealed that the PolyhHb perfusate elicited less cellular damage, extravasation, iron tissue deposition, and edema than either RBCs or colloid control. These results show promise for a next-generation PolyhHb to maintain lung function throughout EVLP.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Transplante de Pulmão , Perfusão , Ratos Sprague-Dawley , Hemoglobinas/administração & dosagem , Animais , Transplante de Pulmão/métodos , Transplante de Pulmão/efeitos adversos , Ratos , Perfusão/métodos , Humanos , Substitutos Sanguíneos/farmacologia , Masculino , Pulmão , Oxigênio/metabolismo , Aloenxertos , Hemólise/efeitos dos fármacos , Eritrócitos
4.
Transl Res ; 260: 83-92, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37268039

RESUMO

The present study aimed to compare the ability of tense (T) and relaxed (R) quaternary state polymerized human hemoglobin (PolyhHb) to restore hemodynamics after severe trauma in a rat model, and to assess their relative toxicity in a guinea pigs (GPs). To assess the efficacy of these PolyhHbs in restoring hemodynamics, Wistar rats were subjected to traumatic brain injury (TBI) followed by hemorrhagic shock (HS). Animals were separated into 3 groups based on the resuscitation solution: Whole blood, T-state or R-state PolyhHb, and followed for 2 hours after resuscitation. For toxicity evaluation, GPs were subjected to HS and the hypovolemic state was maintained for 50 minutes. Then, the GPs were divided randomly into 2 groups, and reperfused with T- or R-state PolyhHb. Rats resuscitated with blood and T-state PolyhHb had a higher recovery of MAP at 30 min after resuscitation when compared to R-state PolyhHb, demonstrating the greater ability of T-state PolyhHb to restore hemodynamics compared to R-state PolyhHb. Resuscitation with R-state PolyhHb in GPs increased markers of liver damage and inflammation, kidney injury and systemic inflammation compared to the T-state PolyhHb group. Finally, increased levels of cardiac damage markers, such as troponin were observed, indicating greater cardiac injury in GPs resuscitated with R-state PolyhHb. Therefore, our results showed that T-state PolyhHb exhibited superior efficacy in a model of TBI followed by HS in rats, and presented reduced vital organ toxicity in GPs, when compared to R-state PolyhHb.


Assuntos
Lesões Encefálicas Traumáticas , Choque Hemorrágico , Animais , Cobaias , Humanos , Ratos , Modelos Animais de Doenças , Hemoglobinas , Oxigênio , Ratos Wistar
5.
ASAIO J ; 69(7): 716-723, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976617

RESUMO

Ex vivo lung perfusion (EVLP) is a method of organ preservation to expand the donor pool by allowing organ assessment and repair. Perfusion solution composition is crucial to maintaining and improving organ function during EVLP. EVLP compared perfusates supplemented with either polymeric human serum albumin (PolyHSA) or standard human serum albumin (HSA). Rat heart-lung blocks underwent normothermic EVLP (37°C) for 120 minutes using perfusate with 4% HSA or 4% PolyHSA synthesized at a 50:1 or 60:1 molar ratio of glutaraldehyde to PolyHSA. Oxygen delivery, lung compliance, pulmonary vascular resistance (PVR), wet-to-dry ratio, and lung weight were measured. Perfusion solution type (HSA or PolyHSA) significantly impacted end-organ metrics. Oxygen delivery, lung compliance, and PVR were comparable among groups ( P > 0.05). Wet-to-dry ratio increased in the HSA group compared to the PolyHSA groups (both P < 0.05) suggesting edema formation. Wet-to-dry ratio was most favorable in the 60:1 PolyHSA-treated lungs compared to HSA ( P < 0.05). Compared to using HSA, PolyHSA significantly lessened lung edema. Our data confirm that the physical properties of perfusate plasma substitutes significantly impact oncotic pressure and the development of tissue injury and edema. Our findings demonstrate the importance of perfusion solutions and PolyHSA is an excellent candidate macromolecule to limit pulmonary edema. http://links.lww.com/ASAIO/A980.


Assuntos
Transplante de Pulmão , Humanos , Animais , Ratos , Transplante de Pulmão/métodos , Pulmão , Perfusão/métodos , Albumina Sérica Humana , Preservação de Órgãos/métodos , Oxigênio
6.
Sci Rep ; 12(1): 20480, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443351

RESUMO

For the past thirty years, hemoglobin-based oxygen carriers (HBOCs) have been under development as a red blood cell substitute. Side-effects such as vasoconstriction, oxidative injury, and cardiac toxicity have prevented clinical approval of HBOCs. Recently, high molecular weight (MW) polymerized human hemoglobin (PolyhHb) has shown positive results in rats. Studies have demonstrated that high MW PolyhHb increased O2 delivery, with minimal effects on blood pressure, without vasoconstriction, and devoid of toxicity. In this study, we used guinea pigs to evaluate the efficacy and safety of high MW PolyhHb, since like humans guinea pigs cannot produce endogenous ascorbic acid, which limits the capacity of both species to deal with oxidative stress. Hence, this study evaluated the efficacy and safety of resuscitation from severe hemorrhagic shock with high MW PolyhHb, fresh blood, and blood stored for 2 weeks. Animals were randomly assigned to each experimental group, and hemorrhage was induced by the withdrawal of 40% of the blood volume (BV, estimated as 7.5% of body weight) from the carotid artery catheter. Hypovolemic shock was maintained for 50 min. Resuscitation was implemented by infusing 25% of the animal's BV with the different treatments. Hemodynamics, blood gases, total hemoglobin, and lactate were not different before hemorrhage and during shock between groups. The hematocrit was lower for the PolyhHb group compared to the fresh and stored blood groups after resuscitation. Resuscitation with stored blood had lower blood pressure compared to fresh blood at 2 h. There was no difference in mean arterial pressure between groups at 24 h. Resuscitation with PolyhHb was not different from fresh blood for most parameters. Resuscitation with PolyhHb did not show any remarkable change in liver injury, inflammation, or cardiac damage. Resuscitation with stored blood showed changes in liver function and inflammation, but no kidney injury or systemic inflammation. Resuscitation with stored blood after 24 h displayed sympathetic hyper-activation and signs of cardiac injury. These results suggest that PolyhHb is an effective resuscitation alternative to blood. The decreased toxicities in terms of cardiac injury markers, vital organ function, and inflammation following PolyhHb resuscitation in guinea pigs indicate a favorable safety profile. These results are promising and support future studies with this new generation of PolyhHb as alternative to blood when blood is unavailable.


Assuntos
Substitutos Sanguíneos , Choque Hemorrágico , Humanos , Cobaias , Animais , Ratos , Choque Hemorrágico/terapia , Ressuscitação/efeitos adversos , Substitutos Sanguíneos/efeitos adversos , Polimerização , Inflamação , Oxigênio
7.
Biotechnol Bioeng ; 119(12): 3447-3461, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36120842

RESUMO

Polymerized human hemoglobin (PolyhHb) is being studied as a possible red blood cell (RBC) substitute for use in scenarios where blood is not available. While the oxygen (O2 ) carrying capacity of PolyhHb makes it appealing as an O2 therapeutic, the commercial PolyhHb PolyHeme® (Northfield Laboratories Inc.) was never approved for clinical use due to the presence of large quantities of low molecular weight (LMW) polymeric hemoglobin (Hb) species (<500 kDa), which have been shown to elicit vasoconstriction, systemic hypertension, and oxidative tissue injury in vivo. Previous bench-top scale studies in our lab demonstrated the ability to synthesize and purify PolyhHb using a two-stage tangential flow filtration purification process to remove almost all undesirable Hb species (>0.2 µm and <500 kDa) in the material, to create a product that should be safer for transfusion. Therefore, to enable future large animal studies and eventual human clinical trials, PolyhHb synthesis and purification processes need to be scaled up to the pilot scale. Hence in this study, we describe the pilot scale synthesis and purification of PolyhHb. Characterization of pilot scale PolyhHb showed that PolyhHb could be successfully produced to yield biophysical properties conducive for its use as an RBC substitute. Size exclusion high performance liquid chromatography showed that pilot scale PolyhHb yielded a high molecular weight Hb polymer containing a small percentage of LMW Hb species (<500 kDa). Additionally, the auto-oxidation rate of pilot scale PolyhHb was even lower than that of previous generations of PolyhHb. Taken together, these results demonstrate that PolyhHb has the ability to be seamlessly manufactured at the pilot scale to enable future large animal studies and clinical trials.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Animais , Humanos , Substitutos Sanguíneos/síntese química , Hemoglobinas/síntese química , Peso Molecular
8.
PLoS One ; 17(7): e0269939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802716

RESUMO

Particle encapsulated hemoglobin (Hb)-based oxygen (O2) carriers (HBOCs) have clear advantages over their acellular counterparts because of their larger molecular diameter and lack of vasoactivity upon transfusion. Poly(ethylene glycol) surface conjugated liposome encapsulated Hb (PEG-LEH) nanoparticles are considered a promising class of HBOC for use as a red blood cell (RBC) substitute. However, their widespread usage is limited by manufacturing processes which prevent material scale up. In this study, PEG-LEH nanoparticles were produced via a scalable and robust process using a high-pressure cell disruptor, and their biophysical properties were thoroughly characterized. Hb encapsulation, methemoglobin (metHb) level, O2-PEG-LEH equilibria, PEG-LEH gaseous (oxygen, carbon monoxide, nitric oxide) ligand binding/release kinetics, lipocrit, and long-term storage stability allowed us to examine their potential suitability and efficacy as an RBC replacement. Our results demonstrate that PEG-LEH nanoparticle suspensions manufactured via a high-pressure cell disruptor have Hb concentrations comparable to whole blood (~12 g/dL) and possess other desirable characteristics, which may permit their use as potential lifesaving O2 therapeutics.


Assuntos
Substitutos Sanguíneos , Polietilenoglicóis , Hemoglobinas , Lipossomos , Oxigênio
9.
Biotechnol Prog ; 38(1): e3219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626100

RESUMO

Polymerized hemoglobin (Hb)-based oxygen carriers (HBOCs) are a scalable and cost-effective red blood cell (RBC) substitute. However, previous generations of commercial polymerized HBOCs elicited oxidative tissue injury in vivo due to the presence of low molecular weight polymeric Hb species (<500 kDa) and cell-free Hb (64 kDa). Polymerized human Hb (PolyhHb) locked in the tense quaternary state (T-state) exhibits great promise to meet clinical needs where past polymerized HBOCs failed. This work shows that separation of T-state PolyhHb via a two-stage tangential flow filtration (TFF) purification train such that the Hb polymers are bracketed between 500 kDa and 0.2 µm creates a uniform polymer size and largely eliminates the Hb species which elicit deleterious side effects in vivo. Biophysical characterization of these materials demonstrates their potential effectiveness as an RBC substitute and verifies the low percentage of low molecular weight Hb polymers and cell-free Hb. Size exclusion chromatography confirms that T-state PolyhHb can be consistently produced in a size range between 500 kDa and 0.2 µm. Furthermore, the average molecular weight of all PolyhHb species produced is one or two orders of magnitude larger than that of the commercial polymerized HBOCs Hemolink and Oxyglobin, respectively. Haptoglobin binding kinetics confirms that two-stage TFF processing of PolyhHb reliably removes cell-free Hb and low molecular weight polymeric Hb species. T-state PolyhHbs demonstrate lower auto-oxidation rates compared to unmodified Hb and prior generations of commercial polymerized HBOCs. These results demonstrate T-state PolyhHb's feasibility as a next-generation polymerized HBOC for potential use in transfusion medicine.


Assuntos
Substitutos Sanguíneos , Hemoglobinas , Hemoglobinas/química , Humanos , Oxigênio/metabolismo , Polimerização , Polímeros/química
10.
Sci Rep ; 11(1): 2509, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510204

RESUMO

Traumatic brain injury (TBI) is often accompanied by hemorrhage, and treatment of hemorrhagic shock (HS) after TBI is particularly challenging because the two therapeutic treatment strategies for TBI and HS often conflict. Ischemia/reperfusion injury from HS resuscitation can be exaggerated by TBI-induced loss of autoregulation. In HS resuscitation, the goal is to restore lost blood volume, while in the treatment of TBI the priority is focused on maintenance of adequate cerebral perfusion pressure and avoidance of secondary bleeding. In this study, we investigate the responses to resuscitation from severe HS after TBI in rats, using fresh blood, polymerized human hemoglobin (PolyhHb), and lactated Ringer's (LR). Rats were subjected to TBI by pneumatic controlled cortical impact. Shortly after TBI, HS was induced by blood withdrawal to reduce mean arterial pressure (MAP) to 35-40 mmHg for 90 min before resuscitation. Resuscitation fluids were delivered to restore MAP to ~ 65 mmHg and animals were monitored for 120 min. Increased systolic blood pressure variability (SBPV) confirmed TBI-induced loss of autoregulation. MAP after resuscitation was significantly higher in the blood and PolyhHb groups compared to the LR group. Furthermore, blood and PolyhHb restored diastolic pressure, while this remained depressed for the LR group, indicating a loss of vascular tone. Lactate increased in all groups during HS, and only returned to baseline level in the blood reperfused group. The PolyhHb group possessed lower SBPV compared to LR and blood groups. Finally, sympathetic nervous system (SNS) modulation was higher for the LR group and lower for the PolyhHb group compared to the blood group after reperfusion. In conclusion, our results suggest that PolyhHb could be an alternative to blood for resuscitation from HS after TBI when blood is not available, assuming additional testing demonstrate similar favorable results. PolyhHb restored hemodynamics and oxygen delivery, without the logistical constraints of refrigerated blood.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Hemoglobinas/administração & dosagem , Ressuscitação/métodos , Choque Hemorrágico/etiologia , Choque Hemorrágico/terapia , Animais , Biomarcadores , Gasometria , Pressão Sanguínea , Volume Sanguíneo , Modelos Animais de Doenças , Hemodinâmica , Humanos , Hidrocortisona/administração & dosagem , Masculino , Ratos , Choque Hemorrágico/diagnóstico
11.
iScience ; 23(6): 101158, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32464594

RESUMO

The effectiveness of cancer radiotherapy is frequently hindered by the hypoxia of the tumor microenvironment. Direct delivery of oxygen to hypoxic tumor tissues is an attractive strategy to overcome this hypoxia-associated radioresistance. Herein, we report the generation of submicron-sized particles comprising myoglobin fused to the crystal-forming domain of Cry3Aa protein for the targeted delivery of oxygen to cancer cells. We demonstrate that myoglobin-containing particles were successfully produced in Bacillus thuringiensis with the assistance of the Cry3Aa domain I. Furthermore, these particles could be genetically modified to incorporate the cell penetrating peptide TAT and cell targeting peptide A549.1, resulting in particles that exhibited improved cellular uptake and targeting toward A549 cells. Notably, these myoglobin-containing particles increased the intracellular oxygen levels of A549 cells and thereby sensitized them to radiation. These findings suggest that the targeted delivery of O2-bound myoglobin could be an effective approach to enhance the efficacy of radiotherapy.

12.
Biotechnol Bioeng ; 117(8): 2362-2376, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472694

RESUMO

Previously, our lab developed high molecular weight (MW) tense (T) quaternary state glutaraldehyde polymerized bovine hemoglobins (PolybHbs) that exhibited reduced vasoactivity in several small animal models. In this study, we prepared PolybHb in the T and relaxed (R) quaternary state with ultrahigh MW (>500 kDa) with varying cross-link densities, and investigated the effect of MW on key biophysical properties (i.e., O2 affinity, cooperativity (Hill) coefficient, hydrodynamic diameter, polydispersity, polymer composition, viscosity, gaseous ligand-binding kinetics, auto-oxidation, and haptoglobin [Hp]-binding kinetics). To further optimize current PolybHb synthesis and purification protocols, we performed a comprehensive meta-data analysis to evaluate correlations between procedural parameters (i.e., cross-linker:bovine hemoglobin (bHb) molar ratio, gas-liquid exchange time, temperature during sodium dithionite addition, and number of diafiltration cycles) and the biophysical properties of both T- and R-state PolybHbs. Our results showed that, the duration of the fast-step auto-oxidation phase of R-state PolybHb increased with decreasing glutaraldehyde:bHb molar ratio. Additionally, T-state PolybHbs exhibited significantly higher bimolecular rate constants for binding to Hp and unimolecular O2 offloading rate constants compared to R-state PolybHbs. The methemoglobin (metHb) level in the final product was insensitive to the molar ratio of glutaraldehyde to bHb for all PolybHbs. During tangential flow filtration processing of the final product, 14 diafiltration cycles was found to yield the lowest metHb level.


Assuntos
Eritrócitos/química , Glutaral , Hemoglobinas , Polímeros , Animais , Substitutos Sanguíneos , Bovinos , Glutaral/química , Glutaral/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Polimerização , Polímeros/química , Polímeros/metabolismo , Ligação Proteica
13.
J Control Release ; 320: 442-456, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31981659

RESUMO

Vascular endothelial growth factor (VEGF) is a key regulator of abnormal blood vessel growth. As such, bevacizumab-based inhibition of VEGF has been the clinically adopted strategy to treat colorectal and breast cancers as well as age-related macular degeneration (AMD). However, as the treatment of vascular diseases often requires a high drug concentration for a long period, the burst release of bevacizumab remains a critical limitation in anti-VEGF-based therapies. Maintaining bevacizumab at high concentrations over extended periods remains challenging due to insufficient drug loading capacity and drug-device interactions. We report the development of a polymeric based bi-layered capsule that could address these challenges by extending the release over one year, thereby providing an effective platform enabling treatment of chronic vascular diseases. Remarkably, the developed capsules have a bi-layered structure which ensures the structural integrity of the injectable capsules and appropriate diffusion of bevacizumab by providing optimal physical trapping and electrostatic interaction. Meanwhile, the central hollow design enables a higher drug loading to meet the need for long-term release of bevacizumab for several months to one year. Using an in vitro drug release assay, we demonstrated that the bi-layered capsule could produce longer-term local drug administration by intravitreal injection compared to previously reported devices. The capsules also present minimal toxicity and maintain anti-VEGF potency, suggesting that our approach may have the potential to treat vascular-related diseases using bevacizumab.


Assuntos
Ranibizumab , Fator A de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/uso terapêutico , Bevacizumab , Injeções Intravítreas , Acuidade Visual
14.
Biotechnol Prog ; 36(3): e2958, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922354

RESUMO

Hepatic hollow fiber (HF) bioreactors can be used to provide temporary support to patients experiencing liver failure. Before being connected to the patient's circulation, cells in the bioreactor must be exposed to a range of physiological O2 concentrations as observed in the liver sinusoid to ensure proper performance. This zonation in cellular oxygenation promotes differences in hepatocyte phenotype and may better approximate the performance of a real liver within the bioreactor. Polymerized human hemoglobin (PolyhHb) locked in the tense quaternary state (T-state) has the potential to both supply and regulate O2 transport to cultured hepatocytes in the bioreactor due to its low O2 affinity. In this study, T-state PolyhHb production and purification processes were optimized to minimize the concentration of low-molecular-weight PolyhHb species in solution. Deconvolution of size-exclusion chromatography spectra was performed to calculate the distribution of polymeric Hb species in the final product. Fluid flow and mass transport within a single fiber of a hepatic HF bioreactor was computationally modeled with finite element methods to simulate the effects of employing T-state PolyhHb to facilitate O2 transport in a hepatic bioreactor system. Optimal bioreactor performance was defined as having a combined hypoxic and hyperoxic volume fraction in the extracapillary space of less than 0.05 where multiple zones were observed. The Damköhler number and Sherwood number had strong inverse relationships at each cell density and fiber thickness combination. These results suggest that targeting a specific Damköhler number may be beneficial for optimal hepatic HF bioreactor operation.


Assuntos
Hemoglobinas/química , Falência Hepática/genética , Fígado/metabolismo , Polimerização , Animais , Reatores Biológicos , Hemoglobinas/genética , Hepatócitos/metabolismo , Humanos , Fígado/química , Falência Hepática/patologia , Falência Hepática/terapia , Peso Molecular , Oxigênio/metabolismo , Multimerização Proteica/genética , Estrutura Quaternária de Proteína
15.
Bioconjug Chem ; 31(3): 605-621, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31868349

RESUMO

Polymerized human hemoglobins (PolyhHbs) are a promising class of red blood cell substitute for use in transfusion medicine. Unfortunately, the application of the commonly used glutaraldehyde cross-linking chemistry to synthesize these materials results in a complex mixture of PolyhHb molecules with highly varied batch-to-batch consistency. We implemented a controlled method of gas exchange and reagent addition that results in a homogeneous PolyhHb product. A fully coupled tangential flow filtration system was used to purify and concentrate the synthesized PolyhHb molecules. This improved method of PolyhHb production could be used to more precisely control the size and reduce the polydispersity of PolyhHb molecules, with minimal effects on the resulting oxygen-carrying capability. In addition to these factors, we assessed how the hemoglobin scavenging protein haptoglobin (Hp) would interact with PolyhHb molecules of varying sizes and quarternary states. Our results indicated that T-state PolyhHbs may be more efficiently detoxified by Hp compared with R-state PolyhHb and unmodified Hb.


Assuntos
Hemoglobinas/química , Hemoglobinas/metabolismo , Oxigênio/metabolismo , Multimerização Proteica , Monóxido de Carbono/metabolismo , Haptoglobinas/metabolismo , Humanos , Hidrodinâmica , Cinética , Peso Molecular , Óxido Nítrico/metabolismo , Estrutura Quaternária de Proteína , Reologia , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA