Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
ACS Appl Mater Interfaces ; 10(36): 30723-30731, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168705

RESUMO

A series of strong, rebondable polydisulfide nanocomposite adhesive films have been prepared via the oxidation of a thiol-endcapped semicrystalline oligomer with varying amounts of thiol-functionalized cellulose nanocrystals (CNC-SH). The nanocomposites are designed to have two temperature-sensitive components: (1) the melting of the semicrystalline phase at ca. 70 °C and (2) the inherent dynamic behavior of the disulfide bonds at ca. 150 °C. The utility of these adhesives was demonstrated on different bonding substrates (hydrophilic glass slides and metal), and their bonding at both 80 and 150 °C was examined. In all cases, stronger bonding was achieved at temperatures where the disulfide bonds are dynamic. For high surface energy substrates, such as hydrophilic glass or metal, the adhesive shear strength increases with CNC-SH content, with the 30 wt % CNC-SH composites exhibiting adhesive shear strengths of 50 and 23 MPa for hydrophilic glass and metal, respectively. The effects of contact pressure and time of bonding were also investigated. It was found that ca. 20-30 min bonding time was required to reach maximum adhesion, with adhesives containing higher wt % CNCs requiring longer bonding times. Furthermore, it was found that, in general, an increase in contact pressure results in an increase in the shear strength of the adhesive. The rebonding of the adhesives was demonstrated with little-to-no loss in adhesive shear strength. In addition, the 30 wt % nanocomposite adhesive was compared to some common commercially available adhesives and showed significantly stronger shear strengths when bonded to metal.

3.
ACS Cent Sci ; 3(8): 886-894, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28852703

RESUMO

Inspired by the ability of the sea cucumber to (reversibly) increase the stiffness of its dermis upon exposure to a stimulus, we herein report a stimuli-responsive nanocomposite that can reversibly increase its stiffness upon exposure to warm water. Nanocomposites composed of cellulose nanocrystals (CNCs) that are grafted with a lower critical solution temperature (LCST) polymer embedded within a poly(vinyl acetate) (PVAc) matrix show a dramatic increase in modulus, for example, from 1 to 350 MPa upon exposure to warm water, the hypothesis being that grafting the polymers from the CNCs disrupts the interactions between the nanofibers and minimizes the mechanical reinforcement of the film. However, exposure to water above the LCST leads to the collapse of the polymer chains and subsequent stiffening of the nanocomposite as a result of the enhanced CNC interactions. Backing up this hypothesis are energy conserving dissipative particle dynamics (EDPD) simulations which show that the attractive interactions between CNCs are switched on upon the temperature-induced collapse of the grafted polymer chains, resulting in the formation of a percolating reinforcing network.

4.
Biomacromolecules ; 18(4): 1259-1267, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28328202

RESUMO

An electrochemical process has been used to compact cellulose nanocrystals (CNC) and access aligned micron-sized CNC fibers. Placing a current across aqueous solutions of carboxylic acid functionalized CNCs (t-CNC-COOH) or carboxylic acid/primary amine functionalized CNCs (t-CNC-COOH-NH2) creates a pH gradient between the electrodes, which results in the migration and concentration of the CNC fibers at their isoelectric point. By matching the carboxylic acid/amine ratio of CNCs and collagen (ca. 30:70 carboxylic acid:amine ratio), it is possible to coelectrocompact both nanofibers and access aligned nanocomposite fibers. t-CNC-COOH-NH2/collagen fibers showed a maximum increase in mechanical properties at 5 wt % of t-CNC-COOH-NH2. Compared to collagen/CNC films which have no alignment in the plane of the films, the tensile properties of the aligned fibers show a significant enhancement in the wet mechanical properties (40 MPa vs 230 MPa) for the 5 wt % of t-CNC-COOH-NH2/collagen films and fiber, respectively.


Assuntos
Celulose/síntese química , Colágeno/síntese química , Técnicas Eletroquímicas/métodos , Nanofibras/química , Nanopartículas/química , Celulose/química , Celulose/ultraestrutura , Colágeno/química , Colágeno/ultraestrutura , Fenômenos Mecânicos , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Nanopartículas/ultraestrutura , Análise Espectral Raman , Propriedades de Superfície , Engenharia Tecidual
5.
Carbohydr Polym ; 155: 230-241, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27702508

RESUMO

With a goal of identifying a new scalable source for cellulose nanocrystals (CNCs), we successfully isolated CNCs from a sustainable, non-invasive grass, Miscanthus x. Giganteus (MxG). Subjecting MxG stalks to base hydrolysis, bleaching and acid hydrolysis allowed access to cellulose nanocrystals (MxG-CNC) in high yields. X-ray diffraction studies showed the crystallinity of the MxG-CNCs increased with subsequent treatment conditions (>90% after HCl hydrolysis). Transmission electron microscopy showed that the MxG-CNC exhibit relatively high aspect ratios (60-70), and small angle neutron scattering showed the crystals were ribbon-like with a width and thickness of 8.5 and 2.8nm respectively. As expected, thermomechanical analysis of nanocomposites fabricated with carboxylic acid functionalized MxG-CNC (MxG-CNC-COOH) and PVAc showed an increase in modulus (above Tg) as filler content was increased. Comparing the properties to PVAc nanocomposites containing CNCs from wood showed at least as good, if not slightly better, reinforcement at the same loading level.

6.
J Phys Chem A ; 117(22): 4556-63, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23634943

RESUMO

The dissociation dynamics of internal energy selected iron pentacarbonyl cations, Fe(CO)5(+), have been investigated using the imaging photoelectron photoion coincidence (iPEPICO) spectrometer at the Swiss Light Source. The molecular ion loses all five carbonyl ligands in sequential dissociations in the 8.5-20 eV photon energy range. The Fe(CO)5(+) parent ion is metastable at the onset of the first dissociation reaction on the time scale of the experiment. The slightly asymmetric and broad daughter ion time-of-flight distributions indicate parent ion lifetimes in the microsecond range, and are used to obtain an experimental dissociation rate curve. Further carbonyl losses were found to be fast at threshold. The fractional parent and daughter ion abundances as a function of the photon energy, that is, breakdown diagram, as well as the dissociation rates for the first CO loss were modeled using the statistical Rice-Ramsperger-Kassel-Marcus (RRKM) and statistical adiabatic channel model (SSACM) theories. The excess energy redistribution in the products was also taken into account in a statistical framework. The 0 K dissociative photoionization thresholds for the five carbonyl-loss channels were found to be 9.015 ± 0.024 eV, 10.199 ± 0.027 eV, 10.949 ± 0.033 eV, 12.282 ± 0.39 eV, and 13.821 ± 0.045 eV for the processes leading to Fe(CO)4(+), Fe(CO)3(+), Fe(CO)2(+), Fe(CO)(+), and Fe(+), respectively. The iron cation thermochemistry is well-known, and these onsets connect the bare metal ion to the other fragment ions as well as to the gas phase neutral Fe(CO)5.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA