Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(11): 2893-2896, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262237

RESUMO

Micro-structuration by etching is commonly used in integrated optics, adding complex and costly processing steps that can also potentially damage the device performance, owing to degradation of the etched sidewalls. For diffraction grating fabrication, different strategies have been developed to avoid etching, such as layer deposition on a structured surface or grating deposition on top of active layers. However, etching remains one of the best processes for making high aspect ratio diffraction gratings. In this work, we have developed fully structured diffraction gratings (i.e., like fully etched gratings) using lift-off based processing performed in pulsed laser deposited layers, since the combination of both techniques is of great interest for making micro-structures without etching. We have first studied the influence of the lithography doses in the lift-off process, showing that (1) micrometric spatial resolution can be achieved and (2) the sidewall angle can be controlled from 50° to 150° in 0.5 µm thick layers. Using such optimizations, we have then fabricated Er-doped Y2O3 uniaxial diffraction gratings with different periods ranging from 3 to 8 µm. The fabricated devices exhibit emission and reflectivity properties as a function of the collection angle in good agreement with the modeling, with a maximum luminescence enhancement of ×15 compared with an unstructured layer at a wavelength of 1.54 µm. This work thus highlights lift-off based processing combined with pulsed laser deposition as a promising technique for etch-free practical applications, such as luminescence enhancement in Er-doped layers.

2.
Phys Rev Lett ; 129(8): 083602, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36053693

RESUMO

Exceptional points (EPs), singularities of non-Hermitian physics where complex spectral resonances degenerate, are one of the most exotic features of nonequilibrium open systems with unique properties. For instance, the emission rate of quantum emitters placed near resonators with EPs is enhanced (compared to the free-space emission rate) by a factor that scales quadratically with the resonance quality factor. Here, we verify the theory of spontaneous emission at EPs by measuring photoluminescence from photonic-crystal slabs that are embedded with a high-quantum-yield active material. While our experimental results verify the theoretically predicted enhancement, they also highlight the practical limitations on the enhancement due to material loss. Our designed structures can be used in applications that require enhanced and controlled emission, such as quantum sensing and imaging.

3.
Sci Rep ; 8(1): 9777, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29934643

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

4.
Sci Rep ; 8(1): 4332, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531229

RESUMO

Epitaxial PbZr0.52Ti0.48O3 (PZT) layers were integrated on Si(001) with single PZT {001} orientation, mosaïcity below 1° and a majority of a-oriented ferroelectric domains (∼65%). Ferroelectric and pyroelectric properties are determined along both the out-of-plane and in-plane directions through parallel-plate capacitor and coplanar interdigital capacitor along the <100>PZT direction. A large anisotropy in these properties is observed. The in-plane remnant polarization (21.5 µC.cm-2) is almost twice larger than that measured along the out-of-plane direction (13.5 µC.cm-2), in agreement with the domain orientation. Oppositely, the in-plane pyroelectric coefficient (-285 µC.m-2.K-1) is much lower than that measured out-of-plane (-480 µC.m-2.K-1). The pyroelectric anisotropy is explicated in term of degree of structural freedom with temperature. In particular, the low in-plane pyroelectric coefficient is explained by a two-dimensional clamping of the layers on the substrate which induces tensile stress (from thermal expansion), competing with the decreasing tetragonality of a-domains (shortening of the polar c-axis lattice parameter). Temperature-dependent XRD measurements have revealed an increased fraction of a-domains with temperature, attesting the occurrence of a partial two-dimensional clamping. These observed properties are of critical importance for integrated pyroelectric devices.

5.
Phys Rev Lett ; 120(6): 066102, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481254

RESUMO

We demonstrate that symmetry breaking opens a new degree of freedom to tailor energy-momentum dispersion in photonic crystals. Using a general theoretical framework in two illustrative practical structures, we show that breaking symmetry enables an on-demand tuning of the local density of states of the same photonic band from zero (Dirac cone dispersion) to infinity (flatband dispersion), as well as any constant density over an adjustable spectral range. As a proof of concept, we demonstrate experimentally the transformation of the very same photonic band from a conventional quadratic shape to a Dirac dispersion, a flatband dispersion, and a multivalley one. This transition is achieved by finely tuning the vertical symmetry breaking of the photonic structures. Our results provide an unprecedented degree of freedom for optical dispersion engineering in planar integrated photonic devices.

6.
Sci Rep ; 3: 2708, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24048282

RESUMO

Resistive switching offers a promising route to universal electronic memory, potentially replacing current technologies that are approaching their fundamental limits. In many cases switching originates from the reversible formation and dissolution of nanometre-scale conductive filaments, which constrain the motion of electrons, leading to the quantisation of device conductance into multiples of the fundamental unit of conductance, G0. Such quantum effects appear when the constriction diameter approaches the Fermi wavelength of the electron in the medium - typically several nanometres. Here we find that the conductance of silicon-rich silica (SiOx) resistive switches is quantised in half-integer multiples of G0. In contrast to other resistive switching systems this quantisation is intrinsic to SiOx, and is not due to drift of metallic ions. Half-integer quantisation is explained in terms of the filament structure and formation mechanism, which allows us to distinguish between systems that exhibit integer and half-integer quantisation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA