Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(10): 6998-7005, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38414989

RESUMO

Prolactin is a polypeptide hormone made of 199 amino acids; 50% of the amino acid chain forms helices, and the rest forms loops. This hormone is typically related to initiating and maintaining lactation, although it is also elevated in various pathological conditions. Serum prolactin levels of 2 to 18 ng ml-1 in men, up to 30 ng ml-1 in women, and 10 to 210 ng ml-1 in pregnant women are considered normal. Immunoassay techniques used for detection are susceptible to error in different clinical conditions. Surface-enhanced Raman spectroscopy (SERS) is a technique that allows for obtaining the protein spectrum in a simple, fast, and reproducible manner. Nonetheless, proper characterization of human prolactin's Raman/SERS spectrum at different concentrations has so far not been deeply discussed. This study aims to characterize the Raman spectrum of human prolactin at physiological concentrations using silver nanoparticles (AgNPs) as the SERS substrate. The Raman spectrum of prolactin at 20 ng ul-1 was acquired. Quasi-spherical AgNPs were obtained using chemical synthesis. For SERS characterization, decreasing dilutions of the protein were made by adding deionized water and then a 1 : 1 volume of the AgNPs colloid. For each mixture, the Raman spectrum was determined. The spectrum of prolactin by SERS was obtained with a concentration of up to 0.1 ng ml-1. It showed characteristic bands corresponding to the side chains of aromatic amino acids in the protein's primary structure and the alpha helices of the secondary structure of prolactin. In conclusion, using quasi-spherical silver nanoparticles as the SERS substrate, the Raman spectrum of human prolactin at physiological concentration was determined.

2.
Viruses ; 15(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37896823

RESUMO

Cowpea chlorotic mottle virus (CCMV) and brome mosaic virus (BMV) are naked plant viruses with similar characteristics; both form a T = 3 icosahedral protein capsid and are members of the bromoviridae family. It is well known that these viruses completely disassemble and liberate their genome at a pH around 7.2 and 1 M ionic strength. However, the 1 M ionic strength condition is not present inside cells, so an important question is how these viruses deliver their genome inside cells for their viral replication. There are some studies reporting the swelling of the CCMV virus using different techniques. For example, it is reported that at a pH~7.2 and low ionic strength, the swelling observed is about 10% of the initial diameter of the virus. Furthermore, different regions within the cell are known to have different pH levels and ionic strengths. In this work, we performed several experiments at low ionic strengths of 0.1, 0.2, and 0.3 and systematically increased the pH in 0.2 increments from 4.6 to 7.4. To determine the change in virus size at the different pHs and ionic strengths, we first used dynamic light scattering (DLS). Most of the experiments agree with a 10% capsid swelling under the conditions reported in previous works, but surprisingly, we found that at some particular conditions, the virus capsid swelling could be as big as 20 to 35% of the original size. These measurements were corroborated by atomic force microscopy (AFM) and transmission electron microscopy (TEM) around the conditions where the big swelling was determined by DLS. Therefore, this big swelling could be an easier mechanism that viruses use inside the cell to deliver their genome to the cell machinery for viral replication.


Assuntos
Bromovirus , Vírus de Plantas , Bromovirus/genética , Proteínas do Capsídeo/metabolismo , Capsídeo , Concentração Osmolar
3.
Biomacromolecules ; 23(1): 112-127, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34874701

RESUMO

Polymeric nanogels are promising nonirritating nanocarriers for topical delivery applications. However, conventional hydrophilic networks limit encapsulation of hydrophobic therapeutics and hinder tailored interactions with the amphiphilic skin barrier. To address these limitations, we present amphiphilic nanogels containing hydrophilic networks with hydrophobic domains. Two competing factors determine favorable nanogel-skin interactions and need to be balanced through network composition: suitable surface hydrophobicity and low network rigidity (through physical hydrophobic cross-links). To ensure comparability in such investigations, we prepared a library of nanogels with increasing hydrophobic cholesteryl amounts but similar colloidal features. By combining mechanical and surface hydrophobicity tests (atomic force microscopy (AFM)) with dermal delivery experiments on excised human skin, we can correlate an increased delivery efficacy of Nile red to the viable epidermis with a specific network composition, i.e., 20-30 mol % cholesterol. Thus, our nanogel library identifies a specific balance between surface amphiphilicity and network rigidity to guide developments of advanced dermal delivery vehicles.


Assuntos
Polietilenoglicóis , Polietilenoimina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanogéis , Polietilenoglicóis/química
4.
Biomaterials ; 280: 121253, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801253

RESUMO

The development of induced pluripotent stem cell (iPSCs) has opened unprecedented opportunities for biomedical applications, but poorly defined animal-derived matrices yield cells with limited therapeutic value. Considerable challenges remain in improving cell-culturing approaches to create the conditions for iPSCs' reliable expansion. Herein we report the development of a chemically defined, artificial three-dimensional (3D) microniche for iPSCs' growth and reliable expansion, constructed with degradable polyethyleneglycol-co-polycaprolactone and RGDfk-functionalized dendritic polyglycerol precursors according to bioorthogonal strain-promoted azide-alkyne cycloaddition by droplet-based microfluidics. This compatible microniche can allow for the robust production of iPSCs that maintain high pluripotency expression and excellent viability without pathogen or immunogen transfer risks. This microniche technology shows great promise in enabling iPSCs to achieve their full therapeutic potential.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Engenharia Celular , Células Cultivadas , Hidrogéis/metabolismo , Microfluídica
5.
Nanomedicine (Lond) ; 16(1): 51-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356556

RESUMO

Background: TNF-α is a cytokine involved in inflammation. Surface-enhanced Raman spectroscopy (SERS) could be useful in its detection. Aim: Identify the TNF-α in an aqueous solution, using gold nanoparticles (AuNPs) as a SERS substrate. Materials & methods: Raman and SERS spectra were obtained from TNF-α samples, combined with AuNPs, with decreasing concentrations of TNF-α. The samples were analyzed using optical transmission spectroscopy, dynamic light scattering, and transmission electron microscopy. Results: Transmission electron microscopy/dynamic light scattering determined a change in the average diameter of the TNF-α/AuNPs (∼9.6 nm). Raman bands obtained were associated with aromatic amino acid side chains. We observe Raman signals for TNF-α concentrations as low as 0.125 pg/ml. Conclusion: TNF-α signal at physiological concentrations was determined with SERS.


Assuntos
Ouro , Nanopartículas Metálicas , Análise Espectral Raman , Fator de Necrose Tumoral alfa
6.
Adv Mater ; 32(52): e2006986, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33206452

RESUMO

The extracellular matrix (ECM) undergoes dynamic remodeling and progressive stiffening during tissue regeneration and disease progression. However, most of the artificial ECMs and in vitro disease models are mechanically static. Here, a self-strengthening polymer coating mimicking the dynamic nature of native ECM is designed to study the cellular response to dynamic biophysical cues and promote cell mechanical sensitive response. Spiropyran (SP) is utilized as dynamic anchor group to regulate the strength of cell adhesive peptide ligands. Benefiting from spontaneous thermal merocyanine-to-spiropyran (MC-SP) isomerization, the resulting self-responsive coating displays dynamic self-strengthening of interfacial interactions. Comparing with the static and all of the previous dynamic artificial ECMs, cells on this self-responsive surface remodel the weakly bonded MC-based coatings to activate α5ß1 integrin and Rac signaling in the early adhesion stage. The subsequent MC-to-SP conversion strengthens the ligand-integrin interaction to further activate αvß3 integrin and RhoA/ROCK signaling in the latter stage. This sequential process enhances cellular mechanotransduction as well as the osteogenic differentiation of mesenchymal stem cells (MSCs). It is worth emphasizing that the self-strengthening occurs spontaneously in the absence of any stimulus, making it especially useful for implanted scaffolds in regenerative medicine.


Assuntos
Mecanotransdução Celular , Materiais Biomiméticos/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
J Am Chem Soc ; 142(28): 12181-12192, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538085

RESUMO

Multivalency is a key principle in reinforcing reversible molecular interactions through the formation of multiple bonds. The influenza A virus deploys this strategy to bind strongly to cell surface receptors. We performed single-molecule force spectroscopy (SMFS) to investigate the rupture force required to break individual and multiple bonds formed between synthetic sialic acid (SA) receptors and the two principal spike proteins of the influenza A virus (H3N2): hemagglutinin (H3) and neuraminidase (N2). Kinetic parameters such as the rupture length (χß) and dissociation rate (koff) are extracted using the model by Friddle, De Yoreo, and Noy. We found that a monovalent SA receptor binds to N2 with a significantly higher bond lifetime (270 ms) compared to that for H3 (36 ms). By extending the single-bond rupture analysis to a multibond system of n protein-receptor pairs, we provide an unprecedented quantification of the mechanistic features of multivalency between H3 and N2 with SA receptors and show that the stability of the multivalent connection increases with the number of bonds from tens to hundreds of milliseconds. Association rates (kon) are also provided, and an estimation of the dissociation constants (KD) between the SA receptors to both proteins indicate a 17-fold higher binding affinity for the SA-N2 bond with respect to that of SA-H3. An optimal designed multivalent SA receptor showed a higher binding stability to the H3 protein of the influenza A virus than to the monovalent SA receptor. Our study emphasizes the influence of the scaffold on the presentation of receptors during multivalent binding.


Assuntos
Ácidos Siálicos/química , Glicoproteína da Espícula de Coronavírus/química , Vírus da Influenza A Subtipo H3N2/química , Microscopia de Força Atômica , Estrutura Molecular
8.
Angew Chem Int Ed Engl ; 59(30): 12417-12422, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32441859

RESUMO

Flexible multivalent 3D nanosystems that can deform and adapt onto the virus surface via specific ligand-receptor multivalent interactions can efficiently block virus adhesion onto the cell. We here report on the synthesis of a 250 nm sized flexible sialylated nanogel that adapts onto the influenza A virus (IAV) surface via multivalent binding of its sialic acid (SA) residues with hemagglutinin spike proteins on the virus surface. We could demonstrate that the high flexibility of sialylated nanogel improves IAV inhibition by 400 times as compared to a rigid sialylated nanogel in the hemagglutination inhibition assay. The flexible sialylated nanogel efficiently inhibits the influenza A/X31 (H3N2) infection with IC50 values in low picomolar concentrations and also blocks the virus entry into MDCK-II cells.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Ácido N-Acetilneuramínico/química , Nanogéis/química , Animais , Antivirais/química , Cães , Vírus da Influenza A/fisiologia , Concentração Inibidora 50 , Células Madin Darby de Rim Canino , Microscopia de Força Atômica , Microscopia de Fluorescência , Internalização do Vírus/efeitos dos fármacos
9.
Chemistry ; 26(30): 6919-6934, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32027069

RESUMO

The syntheses of novel amphiphilic 5,5',6,6'-tetrachlorobenzimidacarbocyanine (TBC) dye derivatives with aminopropanediol head groups, which only differ in stereochemistry (chiral enantiomers, meso form and conformer), are reported. For the achiral meso form, a new synthetic route towards asymmetric cyanine dyes was established. All compounds form J aggregates in water, the optical properties of which were characterised by means of spectroscopic methods. The supramolecular structure of the aggregates is investigated by means of cryo-transmission electron microscopy, cryo-electron tomography and AFM, revealing extended sheet-like aggregates for chiral enantiomers and nanotubes for the mesomer, respectively, whereas the conformer forms predominately needle-like crystals. The experiments demonstrate that the aggregation behaviour of compounds can be controlled solely by head group stereochemistry, which in the case of enantiomers enables the formation of extended hydrogen-bond chains by the hydroxyl functionalities. In case of the achiral meso form, however, such chains turned out to be sterically excluded.

10.
ACS Appl Bio Mater ; 3(7): 4474-4485, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025446

RESUMO

The biomechanical environment of natural or synthetic extracellular matrices (ECMs) is identified to play a considerable role in embryonic development in stem cell fate and also in cancer development and fibrotic diseases. However, rare evidence shows the impact of biomechanical signals such as ECM stiffness on cancer cell stemness and autophagy, which makes huge contributions to cancer and many developmental and physiological processes. Furthermore, the influence and mechanism of ECM stiffness on autophagy in cancer cells remains unclear. Herein, we employed fibronectin-coated polyacrylamide hydrogels as the substrates for culturing breast cancer cells. We found that a soft environment was beneficial for the maintenance of cancer stem cell (CSC) population in breast cancer cells, which likely led to aggravated chemoresistance. Conversely, nutritional deprivation-induced autophagy was elevated along with increasing matrix stiffness. In addition, we found that though the central regulator of mechanotransduction, the yes-associated protein, YAP, was beneficial for autophagy activation, unexpectedly, it was not the main cause of rigid substrate promoting autophagy. In contrast, the YAP was crucial for a compliant environment for maintaining breast cancer stem cells and promoting chemotherapeutic resistance. We also found that the Rho-ROCK-ERK signal pathway and actin cytoskeleton were essential for the regulation of autophagy by matrix stiffness. Taken together, our study showed the important influence of ECM stiffness on stemness and autophagy in breast cancer cells and revealed the possible signal pathway involved in the mechanotransduction in autophagy activation, which provides significant implications for the study of cancer progression and design of hydrogels for tissue engineering in clinical therapy.

11.
PLoS Biol ; 17(12): e3000557, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31826007

RESUMO

Balanced transforming growth factor-beta (TGFß)/bone morphogenetic protein (BMP)-signaling is essential for tissue formation and homeostasis. While gain in TGFß signaling is often found in diseases, the underlying cellular mechanisms remain poorly defined. Here we show that the receptor BMP type 2 (BMPR2) serves as a central gatekeeper of this balance, highlighted by its deregulation in diseases such as pulmonary arterial hypertension (PAH). We show that BMPR2 deficiency in endothelial cells (ECs) does not abolish pan-BMP-SMAD1/5 responses but instead favors the formation of mixed-heteromeric receptor complexes comprising BMPR1/TGFßR1/TGFßR2 that enable enhanced cellular responses toward TGFß. These include canonical TGFß-SMAD2/3 and lateral TGFß-SMAD1/5 signaling as well as formation of mixed SMAD complexes. Moreover, BMPR2-deficient cells express genes indicative of altered biophysical properties, including up-regulation of extracellular matrix (ECM) proteins such as fibrillin-1 (FBN1) and of integrins. As such, we identified accumulation of ectopic FBN1 fibers remodeled with fibronectin (FN) in junctions of BMPR2-deficient ECs. Ectopic FBN1 deposits were also found in proximity to contractile intimal cells in pulmonary artery lesions of BMPR2-deficient heritable PAH (HPAH) patients. In BMPR2-deficient cells, we show that ectopic FBN1 is accompanied by active ß1-integrin highly abundant in integrin-linked kinase (ILK) mechano-complexes at cell junctions. Increased integrin-dependent adhesion, spreading, and actomyosin-dependent contractility facilitates the retrieval of active TGFß from its latent fibrillin-bound depots. We propose that loss of BMPR2 favors endothelial-to-mesenchymal transition (EndMT) allowing cells of myo-fibroblastic character to create a vicious feed-forward process leading to hyperactivated TGFß signaling. In summary, our findings highlight a crucial role for BMPR2 as a gatekeeper of endothelial homeostasis protecting cells from increased TGFß responses and integrin-mediated mechano-transduction.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Células Endoteliais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/fisiologia , Linhagem Celular , Endotélio Vascular/metabolismo , Fibrilina-1/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Pulmão/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Receptores de Fatores de Crescimento Transformadores beta , Transdução de Sinais , Proteínas Smad
12.
Nanoscale ; 11(34): 15804-15809, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31433428

RESUMO

As resistance to traditional drugs emerges for treatment of virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3-C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications.

14.
Biophys J ; 116(6): 1037-1048, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30799074

RESUMO

The influenza A virus infects target cells through multivalent interactions of its major spike proteins, hemagglutinin (HA) and neuraminidase (NA), with the cellular receptor sialic acid (SA). HA is known to mediate the attachment of the virion to the cell, whereas NA enables the release of newly formed virions by cleaving SA from the cell. Because both proteins target the same receptor but have antagonistic functions, virus infection depends on a properly tuned balance of the kinetics of HA and NA activities for viral entry to and release from the host cell. Here, dynamic single-molecule force spectroscopy, based on scanning force microscopy, was employed to determine these bond-specific kinetics, characterized by the off rate koff, rupture length xß and on rate kon, as well as the related free-energy barrier ΔG and the dissociation constant KD. Measurements were conducted using surface-immobilized HA and NA of the influenza A virus strain A/California/04/2009 and a novel, to our knowledge, synthetic SA-displaying receptor for functionalization of the force probe. Single-molecule force spectroscopy at force loading rates between 100 and 50,000 pN/s revealed most probable rupture forces of the protein-SA bond in the range of 10-100 pN. Using an extension of the widely applied Bell-Evans formalism by Friddle, De Yoreo, and co-workers, it is shown that HA features a smaller xß, a larger koff and a smaller ΔG than NA. Measurements of the binding probability at increasing contact time between the scanning force microscopy force probe and the surface allow an estimation of KD, which is found to be three times as large for HA than for NA. This suggests a stronger interaction for NA-SA than for HA-SA. The biological implications in regard to virus binding to the host cell and the release of new virions from the host cell are discussed.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Fenômenos Mecânicos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Análise Espectral , Fenômenos Biomecânicos , Membrana Celular/metabolismo , Cinética , Ligação Proteica
15.
Acta Biomater ; 77: 28-37, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981495

RESUMO

The direct injection of bone marrow mesenchymal stem cells (hMSCs) is a promising strategy for bone tissue engineering applications. Herein, we have developed injectable degradable poly(vinyl alcohol) (PVA) microgels loaded with hMSCs and growth factors and prepared by a high-throughput microfluidic technology. The PVA-based microgels with tunable mechanical and degradable properties were composed of vinyl ether acrylate-functionalized PVA (PVA-VEA) and thiolated PVA-VEA (PVA-VEA-SH) through a Michael-type crosslinking reaction under mild conditions. The hMSCs sustain high viability in PVA microgels, and cell proliferation and migration behaviors can easily be adjusted by varying crosslinking densities of PVA microgels. Additionally, bone morphogenetic protein-2 (BMP-2) co-encapsulated into the microgel environments enhanced osteogenic differentiation of hMSCs as indicated by a significant increase in alkaline phosphatase activity, calcium content, and Runx2 and OPN gene expression levels. These results demonstrate the degradable PVA microgels with tailored stem cell microenvironments and controlled release profile of the growth factor to promote and direct differentiation. These PVA-based microgels have promising potential as ideal cell vehicles for applications in regenerative medicine. STATEMENT OF SIGNIFICANCE: Stem cell transplantation by an injectable, minimally invasive method has great and promising potential for various injuries, diseases, and tissue regeneration. However, its applications are largely limited owing to the low cell retention and engraftment at the lesion location after administration. We have developed an injectable degradable poly(vinyl alcohol) (PVA) microgel prepared by a high-throughput microfluidic technology and co-loaded with bone marrow mesenchymal stem cells (hMSCs) and growth factor to protect the stem cells from harsh environmental stress and realize controlled cell differentiation in well-defined microenvironments for bone regeneration. We demonstrated that these degradable PVA microgels can be used as stem cell scaffolds with tailored cell microenvironments and controlled release profile of growth factor to promote and direct differentiation. We are convinced that these PVA-based microgels have promising potential in the future as cellular scaffolds for applications in regenerative medicine.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Microfluídica , Osteogênese/efeitos dos fármacos , Álcool de Polivinil/química , Engenharia Tecidual/métodos , Implantes Absorvíveis , Materiais Biocompatíveis/química , Células da Medula Óssea/citologia , Proteína Morfogenética Óssea 2/química , Regeneração Óssea , Osso e Ossos/fisiologia , Cálcio/química , Proliferação de Células , Sobrevivência Celular , Módulo de Elasticidade , Géis , Humanos , Oxigênio/química , Medicina Regenerativa , Transplante de Células-Tronco , Compostos de Sulfidrila , Alicerces Teciduais
16.
ACS Nano ; 12(7): 6429-6442, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29894156

RESUMO

The entry process of viruses into host cells is complex and involves stable but transient multivalent interactions with different cell surface receptors. The initial contact of several viruses begins with attachment to heparan sulfate (HS) proteoglycans on the cell surface, which results in a cascade of events that end up with virus entry. The development of antiviral agents based on multivalent interactions to shield virus particles and block initial interactions with cellular receptors has attracted attention in antiviral research. Here, we designed nanogels with different degrees of flexibility based on dendritic polyglycerol sulfate to mimic cellular HS. The designed nanogels are nontoxic and broad-spectrum, can multivalently interact with viral glycoproteins, shield virus surfaces, and efficiently block infection. We also visualized virus-nanogel interactions as well as the uptake of nanogels by the cells through clathrin-mediated endocytosis using confocal microscopy. As many human viruses attach to the cells through HS moieties, we introduce our flexible nanogels as robust inhibitors for these viruses.


Assuntos
Antivirais/química , Antivirais/farmacologia , Géis/química , Géis/farmacologia , Glicerol/química , Glicerol/farmacologia , Polímeros/química , Polímeros/farmacologia , Internalização do Vírus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Química Click , Proteoglicanas de Heparan Sulfato/análogos & derivados , Proteoglicanas de Heparan Sulfato/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Humanos , Modelos Moleculares , Nanopartículas/química , Células Vero
17.
J Mater Chem B ; 6(10): 1489-1500, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254213

RESUMO

Thermoresponsive polymer coatings can facilitate cell sheet fabrication under mild conditions by promoting cell adhesion and proliferation at 37 °C. At lower temperatures the detachment of confluent cell sheets is triggered without enzymatic treatment. Thus, confluent cell sheets with intact extracellular matrix for regenerative medicine or tissue engineering applications become available. Herein, we applied the previously identified structural design parameters of functional, thermoresponsive poly(glycidyl ether) brushes on gold to the more application-relevant substrate glass via the self-assembly of a corresponding block copolymer (PGE-AA) with a short surface-reactive, amine-presenting anchor block. Both, physical and covalent immobilization on glass via either multivalent ionic interactions of the anchor block with bare glass or the coupling of the anchor block to a polydopamine (PDA) adhesion layer on glass resulted in stable coatings. Atomic force microscopy revealed a high degree of roughness of covalently attached coatings on the PDA adhesion layer, while physically attached coatings on bare glass were smooth and in the brush-like regime. Cell sheets of primary human dermal fibroblasts detached reliably (86%) and within 20 ± 10 min from physically tethered PGE-AA coatings on glass when prepared under cloud point grafting conditions. The presence of the laterally inhomogeneous PDA adhesion layer, however, hindered the spontaneous temperature-triggered cell detachment from covalently grafted PGE-AA, decreasing both detachment rate and reliability. Despite being only physically attached, self-assembled monolayer brushes of PGE-AA block copolymers on glass are functional and stable thermoresponsive coatings for application in cell sheet fabrication of human fibroblasts as determined by X-ray photoelectron spectroscopy.

18.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226490

RESUMO

The capabilities of conductive nanomaterials to be produced in liquid form with well-defined chemical, physical, and biological properties are highly important for the construction of next-generation flexible bioelectronic devices. Although functional graphene nanomaterials can serve as attractive liquid nanoink platforms for the fabrication of bioelectronics, scalable synthesis of graphene nanoink with an integration of high colloidal stability, water processability, electrochemical activity, and especially bioactivity remains a major challenge. Here, a facile and scalable synthesis of supramolecular-functionalized multivalent graphene nanoink (mGN-ink) via [2+1] nitrene cycloaddition is reported. The mGN-ink unambiguously displays a well-defined and flat 2D morphology and shows good water processability and bioactivity. The uniquely chemical, physical, and biological properties of mGN-ink endow the constructed bioelectronic films and nanofibers with high flexibility and durability, suitable conductivity and electrochemical activity, and most importantly, good cellular compatibility and a highly efficient control of stem-cell spreading and orientation. Overall, for the first time, a water-processable and bioactive mGN-ink is developed for the design of flexible and electrochemically active bioelectronic composites and devices, which not only presents manifold possibilities for electronic-cellular applications but also establishes a new pathway for adapting macroscopic usages of graphene nanomaterials in bionic, biomedical, electronic, and even energy fields.

19.
Biomater Sci ; 5(11): 2328-2336, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29034396

RESUMO

In the present study, a pH sensitive nanogel platform for gene delivery was developed. The cationic nanogels based on dendritic polyglycerol (dPG) and low molecular weight polyethylenimine units were able to encapsulate siRNA during the manufacturing process. The thiol-Michael nanoprecipitation method, which operates under mild conditions and did not require any catalyst or surfactant, was used to develop tailor-made nanogels in the sub-100 nm range. The incorporation of pH sensitive benzacetal-bonds inside the nanogel network enables the controlled intracellular release of the cargo. The functionality to transport therapeutic biomolecules was tested by an in vitro GFP-siRNA transfection assay. Encapsulated siRNA could silence GFP expressing HeLa cells (up to 71% silencing in GFP). Furthermore, significantly reduced toxicity of the nanogel platform compared to the non-degradable PEI was observed. These properties realize a new carrier platform in the field of gene therapy.


Assuntos
Portadores de Fármacos/química , Inativação Gênica , Nanopartículas/química , Polietilenoglicóis/química , Polietilenoimina/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Liberação Controlada de Fármacos , Géis , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Transfecção
20.
Acta Biomater ; 59: 117-128, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28647625

RESUMO

Thermoresponsive polymer coatings, optimized for cell adhesion and thermally-triggered cell detachment, allow the fabrication of confluent cell sheets with intact extracellular matrix. However, rational design guidelines for such coatings are rare, since temperature-triggered cell adhesion and detachment from thermoresponsive surfaces are mechanistically not well understood. Herein, we investigated the impact of molecular weight (2, 9, 24kDa), grafting density (0.04-1.4 chains nm-2), morphology, and roughness of well-characterized thermoresponsive poly(glycidyl ether) brushes on the cell response at 37 and 20°C. NIH 3T3 mouse fibroblasts served as a model cell line for adhesion, proliferation, and cell sheet detachment. The cell response was correlated with serum protein adsorption from cell culture medium containing 10% fetal bovine serum. Intact cell sheets could be harvested from all the studied poly(glycidyl ether) coated surfaces, irrespective of the molecular weight, provided that the morphology of the coating was homogenous and the surface was fully shielded by the hydrated brush. The degree of chain overlap was estimated by the ratio of twice the polymer's Flory radius in a theta solvent to its interchain distance, which should be located in the strongly overlapping brush regime (2 Rf/l>1.4). In contrast, dense PNIPAM (2.5kDa) control monolayers did not induce protein adsorption from cell culture medium at 37°C and, as a result, did not allow a significant cell adhesion. These structural design parameters of functional poly(glycidyl ether) coatings on gold will contribute to future engineering of these thermoresponsive coatings on more common, cell culture relevant substrates. STATEMENT OF SIGNIFICANCE: Cell sheet engineering as a scaffold-free approach towards tissue engineering resembles a milestone in regenerative medicine. The fabrication of confluent cell sheets maintains the extracellular matrix of cells which serves as the physiological cell scaffold. Thermoresponsive poly(glycidyl ether)s are highly cell-compatible and brushes thereof promote cell adhesion and growth without modification with additional cell adhesive ligands. Thus, a direct correlation of temperature-dependent serum protein adsorption and cell response with surface design parameters such as grafting density and molecular weight became accessible. Hence, surface engineering parameters of well-defined poly(glycidyl ether) monolayers for reproducible cell sheet fabrication have been identified. These design guidelines may also prove beneficial in the development of other brush-like thermoresponsive coatings for cell sheet engineering.


Assuntos
Resinas Acrílicas , Materiais Revestidos Biocompatíveis , Ouro , Teste de Materiais , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Ouro/química , Ouro/farmacologia , Camundongos , Células NIH 3T3
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA