Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 1): 130540, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430998

RESUMO

Polypyrimidine sequences can be targeted by antiparallel clamps forming triplex structures either for biosensing or therapeutic purposes. Despite its successful implementation, their biophysical properties remain to be elusive. In this work, PAGE, circular dichroism and multivariate analysis were used to evaluate the properties of PPRHs directed to SARS-CoV-2 genome. Several PPRHs designed to target various polypyrimidine sites within the viral genome were synthesized. These PPRHs displayed varying binding affinities, influenced by factors such as the length of the PPRH and its GC content. The number and position of pyrimidine interruptions relative to the 4 T loop of the PPRH was found a critical factor, affecting the binding affinity with the corresponding target. Moreover, these factors also showed to affect in the intramolecular and intermolecular equilibria of PPRHs alone and when hybridized to their corresponding targets, highlighting the polymorphic nature of these systems. Finally, the functionality of the PPRHs was evaluated in a thermal lateral flow sensing device showing a good correspondence between their biophysical properties and detection limits. These comprehensive studies contribute to the understanding of the critical factors involved in the design of PPRHs for effective targeting of biologically relevant genomes through the formation of triplex structures under neutral conditions.

2.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499587

RESUMO

SARS-CoV-2, a positive-strand RNA virus has caused devastating effects. The standard method for COVID diagnosis is based on polymerase chain reaction (PCR). The method needs expensive reagents and equipment and well-trained personnel and takes a few hours to be completed. The search for faster solutions has led to the development of immunological assays based on antibodies that recognize the viral proteins that are faster and do not require any special equipment. Here, we explore an innovative analytical approach based on the sandwich oligonucleotide hybridization which can be adapted to several biosensing devices including thermal lateral flow and electrochemical devices, as well as fluorescent microarrays. Polypurine reverse-Hoogsteen hairpins (PPRHs) oligonucleotides that form high-affinity triplexes with the polypyrimidine target sequences are used for the efficient capture of the viral genome. Then, a second labeled oligonucleotide is used to detect the formation of a trimolecular complex in a similar way to antigen tests. The reached limit of detection is around 0.01 nM (a few femtomoles) without the use of any amplification steps. The triplex enhanced nucleic acid detection assay (TENADA) can be readily adapted for the detection of any pathogen requiring only the knowledge of the pathogen genome sequence.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Oligonucleotídeos/química , Reação em Cadeia da Polimerase , RNA Viral/genética , RNA Viral/análise , Técnicas de Amplificação de Ácido Nucleico/métodos
3.
Adv Drug Deliv Rev ; 191: 114584, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273514

RESUMO

Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Portadores de Fármacos , Distribuição Tecidual , Campos Magnéticos
4.
J Mater Chem B ; 8(31): 6710-6738, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32627783

RESUMO

Tumor-derived extracellular vesicles have emerged as an alternative source of cancer biomarkers in liquid biopsies. Despite their clinical potential, traditional methods for isolation and analysis have hampered their translation into the clinic. The use of nanomaterial-based biosensors can speed up the development of analytical methods for quantifying extracellular vesicles in a specific, highly reproducible, robust, fast and inexpensive way. Here we review the utility of extracellular vesicles as a novel type of liquid biopsies and the recent advances in nanoparticle-based biosensors for their analysis. We aim to emphasise the limitations and challenges that hinder extracellular vesicle analysis using these biosensors and point out potential solutions.


Assuntos
Técnicas Biossensoriais/métodos , Vesículas Extracelulares/metabolismo , Biópsia Líquida/métodos , Nanopartículas , Animais , Humanos
5.
Langmuir ; 31(12): 3687-95, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25741589

RESUMO

Biomimetic silica particles can be synthesized as a nanosized material within minutes in a process mimicked from living organisms such as diatoms and sponges. In this work, we have studied the effect of bovine serum albumin (BSA) as a template to direct the synthesis of silica nanoparticles (NPs) with the potential to associate proteins on its surface. Our approach enables the formation of spheres with different physicochemical properties. Particles using BSA as a protein template were smaller (∼250-380 nm) and were more monodisperse than those lacking the proteic core (∼700-1000 nm) as seen by dynamic light scattering (DLS), scanning electron microscopy (SEM), and environmental scanning electron microscopy (ESEM) analysis. The absence of BSA during synthesis produced silica nanoparticles without any porosity that was detectable by nitrogen adsorption, whereas particles containing BSA developed porosity in the range of 4 to 5 nm which collapsed on the removal of BSA, thus producing smaller pores. These results were in accordance with the pore size calculated by high-resolution transmission electron microscopy (HTEM). The reproducibility of the BSA-templated nanoparticle properties was determined by analyzing four batches of independent synthesizing experiments that maintained their properties. The high positive superficial charge of the nanoparticles facilitated adsorption under mild conditions of a range of proteins from an E. coli extract and a commercial preparation of laccase from Trametes versicolor. All of the proteins were quantitatively desorbed. Experiments conducted showed the reusability of the particles as supports for the ionic adsorption of the biomolecules. The protein loading capacity of the BSA-based biomimetic particles was determined using laccase as 98.7 ± 6.6 mg·g(-1) of particles.


Assuntos
Materiais Biomiméticos/química , Nanopartículas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Animais , Bovinos , Fenômenos Químicos , Tamanho da Partícula , Propriedades de Superfície
6.
Colloids Surf B Biointerfaces ; 89: 126-32, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21992797

RESUMO

We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.


Assuntos
Hepatócitos/citologia , Animais , Camundongos , Células NIH 3T3
7.
Langmuir ; 26(18): 14707-15, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20795718

RESUMO

This manuscript describes a novel method for the biofunctionalization of glass surfaces with polyhistidine-tagged proteins. The main innovation of this methodology consists of the covalent binding between the nitrilotriacetic acid (NTA) moiety and the proteins, ensuring not only orientation, but also stability of the recombinant proteins on NTA-covered surfaces. In this work, as C-terminal polyhistidine tagged cadherin extracellular fragments have been used, this methodology guarantees the proper orientation of these proteins, by mimicking their insertion into cell plasma membranes. These biofunctionalized surfaces have been characterized by confocal microscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscopy, showing a high density of cadherins on the glass surfaces and the stability of the linkage. The prepared materials exhibited a high tendency to promote cell spreading, demonstrating the functionality of the protein and the high utility of these biomaterials to promote cell adhesion events. Interestingly, differences in the cytoskeleton organization have been observed in cells adhering to surfaces with no cadherins or with nonoriented cadherins, in comparison to surfaces functionalized with well-oriented cadherins. This method, which allows the robust immobilization of polyhistidine tagged proteins due to their covalent binding and with a defined orientation, may also find particular usefulness in the making of protein biochips, for analysis of protein-protein interactions, as well as structural and single-molecule studies.


Assuntos
Biomimética/métodos , Caderinas/química , Animais , Caderinas/metabolismo , Adesão Celular , Linhagem Celular , Quelantes/química , Vidro/química , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Metais/química , Camundongos , Ácido Nitrilotriacético/química , Oligopeptídeos/metabolismo , Concentração Osmolar , Ligação Proteica , Silanos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA