Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 554(7692): 351-355, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29400700

RESUMO

The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean-atmosphere climate dynamics. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño-Southern Oscillation, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene.

2.
Nature ; 412(6846): 523-7, 2001 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-11484049

RESUMO

Ice-core measurements of carbon dioxide and the deuterium palaeothermometer reveal significant covariation of temperature and atmospheric CO2 concentrations throughout the climate cycles of the past ice ages. This covariation provides compelling evidence that CO2 is an important forcing factor for climate. But this interpretation is challenged by some substantial mismatches of the CO2 and deuterium records, especially during the onset of the last glaciation, about 120 kyr ago. Here we incorporate measurements of deuterium excess from Vostok in the temperature reconstruction and show that much of the mismatch is an artefact caused by variations of climate in the water vapour source regions. Using a model that corrects for this effect, we derive a new estimate for the covariation of CO2 and temperature, of r2 = 0.89 for the past 150 kyr and r2 = 0.84 for the period 350-150 kyr ago. Given the complexity of the biogeochemical systems involved, this close relationship strongly supports the importance of carbon dioxide as a forcing factor of climate. Our results also suggest that the mechanisms responsible for the drawdown of CO2 may be more responsive to temperature than previously thought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA