Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38045314

RESUMO

Percutaneous renal biopsy (PRB) is commonly used for kidney cancer diagnosis. However, current PRB remains challenging in sampling accuracy. This study introduces a forward-viewing optical coherence tomography (OCT) probe for differentiating tumor and normal tissues, aiming at precise PRB guidance. Five human kidneys and renal carcinoma samples were used to evaluate the performance of our probe. Based on their distinct OCT imaging features, tumor and normal renal tissues can be accurately distinguished. We examined the attenuation coefficient for tissue classification and achieved 98.19% tumor recognition accuracy, but underperformed for distinguishing normal tissues. We further developed convolutional neural networks (CNN) and evaluated two CNN architectures: ResNet50 and InceptionV3, yielding 99.51% and 99.48% accuracies for tumor recognition, and over 98.90% for normal tissues recognition. In conclusion, combining OCT and CNN significantly enhanced the PRB guidance, offering a promising guidance technology for improved kidney cancer diagnosis.

2.
Int J Comput Assist Radiol Surg ; 18(8): 1451-1458, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36653517

RESUMO

PURPOSE: The purpose of this study was to assess if radiologists assisted by deep learning (DL) algorithms can achieve diagnostic accuracy comparable to that of pre-surgical biopsies in benign-malignant differentiation of musculoskeletal tumors (MST). METHODS: We first conducted a systematic review of literature to get the respective overall diagnostic accuracies of fine-needle aspiration biopsy (FNAB) and core needle biopsy (CNB) in differentiating between benign and malignant MST, by synthesizing data from the articles meeting our inclusion criteria. To compared against the accuracies reported in literature, we then invited 4 radiologists, respectively with 2 (A), 6 (B), 7 (C), and 33 (D) years of experience in interpreting musculoskeletal MRI to perform diagnostic tests on our own dataset (n = 62), with and without assistance of a previously developed DL algorithm. The gold standard for benign-malignant differentiation was histopathologic confirmation or clinical/radiographic follow-up. RESULTS: For FNAB, a meta-analysis containing 4604 samples met the inclusion criteria, with the overall diagnostic accuracy reported to be 0.77. For CNB, an overall accuracy of 0.86 was derived by synthesizing results from 7 original research articles containing a total of 587 samples. On our internal MST dataset, the invited radiologists, respectively, achieved diagnostic accuracies of 0.84 (A), 0.89 (B), 0.87 (C), and 0.90 (D), with the assistance of DL. CONCLUSION: Use of DL algorithms on musculoskeletal dynamic contrast-enhanced MRI improved the benign-malignant differentiation accuracy of radiologists to a level comparable to that of pre-surgical biopsies. The developed DL algorithms have a potential to lower the risk of miss-diagnosing malignancy in radiological practice.


Assuntos
Aprendizado Profundo , Humanos , Biópsia por Agulha Fina/métodos , Biópsia com Agulha de Grande Calibre/métodos , Radiologistas , Estudos Retrospectivos , Revisões Sistemáticas como Assunto , Conjuntos de Dados como Assunto
3.
Micromachines (Basel) ; 13(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36422451

RESUMO

The combination of thermal field sensing and microwave operation is an innovative topic in metamaterials. Although there exists research on modulating electromagnetic waves by controlling each column of the metasurface elements for programmable metasurfaces, the regulation is not flexible. In view of this, this paper proposes a metasurface based on distributed thermal sensing that can be independently modulated by each element. In this paper, the metasurface adopts a 1-bit coding metasurface, which is combined with PIN diodes to modulate the phase response. The voltage control circuit feeds back the change in the thermistors to the switching state of the PIN diode. Each metasurface unit contains thermistors, which are used to sense thermal stimulation and can be independently modulated. The metasurface composed of these elements can feel the field generated via heat energy. We can control electromagnetic waves by controlling this field. In order to prove the feasibility of this scheme, a metasurface sample of 8 × 8 elements was designed. Three patterns were used for the design, fabrication, and measurement of the samples. Meanwhile, printed circuit board (PCB) technology was applied. The results show that the simulated results are highly consistent with the experimental results, which verifies that this scheme is practicable.

4.
Materials (Basel) ; 15(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36079295

RESUMO

Metamaterials, or metasurfaces, allow the flexible and efficient manipulation of electromagnetic (EM) wave. Although the passive coding metasurfaces have achieved a great deal of functionality, they also need a complex design process. In this paper, we propose Hilbert-coding metasurfaces for flexible and convenient EM regulation by arranging Hilbert-coding metamaterial units of different orders. To demonstrate this behavior, we designed 12 metasurfaces, then fabricated and measured 6 samples. Validation results on 6 Hilbert-coding metasurfaces show the deflection angles of the four single beam patterns obtained are about 21°, 13°, 12°, and 39°, with energy values of 7.75 dB, 7.3 dB, 7.2 dB, and 7.7 dB, respectively, and the deflection angles of the dual-beam patterns are 28.5° and 20° with energy values of 10.05 dB and 11.4 dB, respectively. The results are quite consistent with the simulation data, further confirming the feasibility of our idea. In addition, there are potential applications in Wireless Communications and Radar-imaging, like EM beam scanning and EM field energy distribution control in communication and imaging scenarios.

5.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215045

RESUMO

Ferromagnetic semiconductors (FMSs) exhibit great potential in spintronic applications. It is believed that a revolution of microelectronic techniques can take off, once the challenges of FMSs in both the room-temperature stability of the ferromagnetic phase and the compatibility with Si-based technology are overcome. In this article, the MnxGe1-x/Si quantum dots (QDs) with the Curie temperature (TC) higher than the room temperature were grown by ion beam co-sputtering (IBCS). With the Mn doping level increasing, the ripening growth of MnGe QDs occurs due to self-assembly via the Stranski-Krastanov (SK) growth mode. The surface-enhanced Raman scattering effect of Mn sites observed in MnGe QDs are used to reveal the distribution behavior of Mn atoms in QDs and the Si buffer layer. The Curie temperature of MnxGe1-x QDs increases, then slightly decreases with increasing the Mn doping level, and reaches its maximum value of 321 K at the doping level of 0.068. After a low-temperature and short-time annealing, the TC value of Mn0.068Ge0.932 QDs increases from 321 K to 383 K. The higher Ge composition and residual strain in the IBCS grown MnxGe1-x QDs are proposed to be responsible for maintaining the ferromagnetic phase above room temperature.

6.
J Magn Reson Imaging ; 56(1): 99-107, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34882890

RESUMO

BACKGROUND: Misdiagnosis of malignant musculoskeletal tumors may lead to the delay of intervention, resulting in amputation or death. PURPOSE: To improve the diagnostic efficacy of musculoskeletal tumors by developing deep learning (DL) models based on contrast-enhanced magnetic resonance imaging and to quantify the improvement in diagnostic performance obtained by using these models. STUDY TYPE: Retrospective. POPULATION: Three hundreds and four musculoskeletal tumors, including 212 malignant and 92 benign lesions, were randomized into the training (n = 180), validation (n = 62) and testing cohort (n = 62). FIELD STRENGTH/SEQUENCE: A 3 T/T1 -weighted (T1 -w), T2 -weighted (T2 -w), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted (CET1 -w) images. ASSESSMENT: Three DL models based, respectively, on the sagittal, coronal, and axial MR images were constructed to predict the malignancy of tumors. Blinded to the prediction results, a group of specialists made independent initial diagnoses for each patient by reading all image sequences. One month after the initial diagnoses, the same group of doctors made another round of diagnoses knowing the malignancy of each tumor predicted by the three models. The reference standard was the pathological diagnosis of malignancy. STATISTICAL TESTS: Sensitivity, specificity, and accuracy (all with 95% confidential intervals [CI]) corresponding to each diagnostic test were computed. Chi-square tests were used to assess the differences in those parameters with and without DL models. A P value < 0.05 was considered statistically significant. RESULTS: The developed models significantly improved the diagnostic sensitivities of two oncologists by 0.15 (95% CI: 0.06-0.24) and 0.36 (95% CI: 0.24-0.28), one radiologist by 0.12 (95% CI: 0.04-0.20), and three of the four orthopedists, respectively, by 0.12 (95% CI: 0.04-0.20), 0.29 (95% CI: 0.18-0.40), and 0.23 (95% CI: 0.13-0.33), without impairing any of their diagnostic specificities (all P > 0.128). DATA CONCLUSION: The DL models developed can significantly improve the performance of doctors with different training and experience in diagnosing musculoskeletal tumors. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade
7.
Micromachines (Basel) ; 12(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34442610

RESUMO

Looking back on the development of metamaterials in the past 20 years, metamaterials have gradually developed from three-dimensional complex electromagnetic structures to a two-dimensional metasurface with a low profile, during which a series of subversive achievements have been produced. The form of electromagnetic manipulation of the metasurface has evolved from passive to active tunable, programmable, and other dynamic and real-time controllable forms. In particular, the proposal of coding and programmable metasurfaces endows metasurfaces with new vitality. By describing metamaterials through binary code, the digital world and the physical world are connected, and the research of metasurfaces also steps into a new era of digitalization. However, the function switch of traditional programmable metamaterials cannot be achieved without human instruction and control. In order to achieve richer and more flexible function regulation and even higher level metasurface design, the intelligence of metamaterials is an important direction in its future development. In this paper, we review the development of tunable, programmable, and intelligent metasurfaces over the past 5 years, focusing on basic concepts, working principles, design methods, manufacturing, and experimental validation. Firstly, several manipulation modes of tunable metasurfaces are discussed; in particular, the metasurfaces based on temperature control, mechanical control, and electrical control are described in detail. It is demonstrated that the amplitude and phase responses can be flexibly manipulated by the tunable metasurfaces. Then, the concept, working principle, and design method of digital coding metasurfaces are briefly introduced. At the same time, we introduce the active programmable metasurfaces from the following aspects, such as structure, coding method, and three-dimensional far-field results, to show the excellent electromagnetic manipulation ability of programmable metasurfaces. Finally, the basic concepts and research status of intelligent metasurfaces are discussed in detail. Different from the previous programmable metamaterials, which must be controlled by human intervention, the new intelligent metamaterials control system will realize autonomous perception, autonomous decision-making, and even adaptive functional manipulation to a certain extent.

8.
Appl Opt ; 59(35): 11046-11052, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33361930

RESUMO

The influence of doping on the ultrafast carrier dynamics in InSb has been studied by time-resolved terahertz spectroscopy with photogenerated carrier densities from 1.5×1018 to 9.5×1019cm-3 at 800 nm. The photoinduced absorption and carrier recovery process show doping type dependence. The carrier recovery time of intrinsic InSb is greater than that of p-doped InSb but less than that of n-doped InSb at low carrier densities. At high carrier densities, compared with intrinsic InSb, the doped InSb is more prone to transient Auger recombination, which indicates that the appearance of the fast decay process depends on the carrier densities. The photoinduced absorption of terahertz probe pulse of n-doped InSb is significantly less than that of p-doped and intrinsic InSb; however, that of p-doped InSb is close to that of intrinsic InSb, which demonstrates that the high concentration of electrons can accelerate the efficiency of transient Auger recombination. Our analysis provides assistance to the design, manufacture, and improvement of photovoltaic detectors.

9.
Nat Commun ; 11(1): 2637, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457457

RESUMO

Metachronal waves commonly exist in natural cilia carpets. These emergent phenomena, which originate from phase differences between neighbouring self-beating cilia, are essential for biological transport processes including locomotion, liquid pumping, feeding, and cell delivery. However, studies of such complex active systems are limited, particularly from the experimental side. Here we report magnetically actuated, soft, artificial cilia carpets. By stretching and folding onto curved templates, programmable magnetization patterns can be encoded into artificial cilia carpets, which exhibit metachronal waves in dynamic magnetic fields. We have tested both the transport capabilities in a fluid environment and the locomotion capabilities on a solid surface. This robotic system provides a highly customizable experimental platform that not only assists in understanding fundamental rules of natural cilia carpets, but also paves a path to cilia-inspired soft robots for future biomedical applications.


Assuntos
Células Artificiais , Cílios/fisiologia , Células Artificiais/ultraestrutura , Cílios/ultraestrutura , Simulação por Computador , Hidrodinâmica , Magnetismo , Modelos Biológicos , Movimento (Física) , Impressão Tridimensional/instrumentação , Robótica/instrumentação
10.
Appl Opt ; 57(33): 9729-9734, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30462008

RESUMO

Ultrafast carrier dynamics in intrinsic and n-doped InSb crystals were studied by time-resolved terahertz spectroscopy using an optical pump-terahertz probe setup with pump fluence from 32 µJ/cm2 to 1910 µJ/cm2. With photoexcitation at 800 nm, the ultrafast photoinduced absorption and carrier recovery process of intrinsic and n-doped InSb showed strong pump fluence dependence. It was found that the magnitude of photoinduced absorption first increased and then decreased with pump fluence. The carrier recovery process could be well fitted with a single exponential curve at low pump fluence, but could be well fitted with a biexponential curve at high pump fluence when a fast photocarrier relaxation appeared. The magnitude of photoinduced absorption increased gradually at low pump fluence due to the increase of the carrier at the bottom of the conduction band by impact ionization. The magnitude of photoinduced absorption decreased gradually at high pump fluence, possibly due to the efficiency of transient Auger recombination greater than the rate of carriers generated in the impact ionization process. The fast decay process appearing at high pump fluence was thought to be dominated by transient Auger recombination.

11.
Appl Opt ; 57(14): 3864-3872, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29791354

RESUMO

In the multifocus microscopic image measurement method, the distortion of the three-dimensional (3D) reconstruction model has always been an important factor affecting the measurement result. In spatial domains, the focus measure algorithm is based on the gradient change of the pixel point to determine the degree of focus of the pixel. So it will be difficult to accurately extract the focus of the pixel in the areas where color difference is not obvious, resulting in 3D model distortion. According to the optical principle, the high-frequency coefficients of the clear image are larger than the high-frequency coefficients of the blurred image. Based on this characteristic, this paper proposes a new multifocus microscopic image 3D reconstruction algorithm using a nonsubsampled wavelet transform (NSWT). The NSWT does not consider the downsampling in wavelet decomposition and has translational invariance. Therefore, the wavelet transform value of each pixel can be calculated in the image, so the high-frequency coefficient of each pixel can be obtained; then the convolution calculation is performed on the high-frequency coefficients of the pixel points in the fixed window as the focus measure value of the pixel point. Compared with the traditional algorithm, the algorithm proposed in this paper can show better unimodal and antinoise performance on the focusing measure curve. In this paper, the reconstruction of the experimental object is Alicona standard block triangular and semicylindrical. The proposed algorithm and the traditional algorithm for comprehensive measure use the root mean square error, peak signal to noise ratio, and correlation coefficient as the measure index. The experimental results and comparative analysis prove the correctness of the proposed algorithm and enable more accurate reconstruction of 3D models based on multifocus microscopic images.

12.
Appl Opt ; 56(22): 6300-6310, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29047828

RESUMO

Optical microscopy enables the observation of highly magnified objects and material structures on microsurfaces, but it can only acquire 2D images. In order to observe areal features more accurately and intuitively, 3D surface microtopography recovery has been applied to form a 3D surface model of an object from its 2D image sequence. In the 3D reconstruction of the focus evaluation operator, we have the gray variance operator, the gray-scale difference absolute sum operator, the Roberts gradient operator, the Tenengrad gradient operator, the improved Laplace operator, etc. There are two problems with these operators: one is that there is no difference between (x,y) and the gray scale of the pixel in the diagonal direction in the field and the other is that the window size of the focus evaluation operator is fixed, e.g., 3×3, 5×5, etc. Thus, the size of the window for each pixel in the image is the same, and the small window may not cover enough field information while being vulnerable to noise. Large windows can cover more information, but they may result in a smoothing phenomenon, which affects the accuracy of the model. Different pixels around the field have different pixel colors when the size of the window is not the same. Therefore, this paper proposes a modified omnidirectional Laplacian operator with an adaptive window to automatically adjust the size of the window according to the color difference within the window. This also takes into consideration the pixels in the diagonal direction. In addition, very comprehensive verification experiments proved the conclusions.

13.
J Biomed Opt ; 22(8): 1-7, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28856872

RESUMO

Massive image acquisition is required along the optical axis in the classical image-analysis-based autofocus method, which significantly decreases autofocus efficiency. A wavefront-sensing-based autofocus technique is proposed to increase the speed of autofocusing and obtain high localization accuracy. Intensities at different planes along the optical axis can be computed numerically after extracting the wavefront at defocus position with the help of the transport-of-intensity equation method. According to the focus criterion, the focal plane can then be determined, and after sample shifting to this plane, the in-focus image can be recorded. The proposed approach allows for fast, precise focus detection with fewer image acquisitions compared to classical image-analysis-based autofocus techniques, and it can be applied in commercial microscopes only with an extra illumination filter.


Assuntos
Microscopia/métodos
14.
Biomed Opt Express ; 8(7): 3155-3162, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28717560

RESUMO

To reduce the long data acquisition time of the common mechanical scanning based Ptychographic Iterative Engine (PIE) technique, the digital micro-mirror device (DMD) is used to form the fast scanning illumination on the sample. Since the transverse mechanical scanning in the common PIE is replaced by the on/off switching of the micro-mirrors, the data acquisition time can be reduced from more than 15 minutes to less than 20 seconds for recording 12 × 10 diffraction patterns to cover the same field of 147.08 mm2. Furthermore, since the precision of DMD fabricated with the optical lithography is always higher than 10 nm (1 µm for the mechanical translation stage), the time consuming position-error-correction procedure is not required in the iterative reconstruction. These two improvements fundamentally speed up both the data acquisition and the reconstruction procedures in PIE, and relax its requirements on the stability of the imaging system, therefore remarkably improve its applicability for many practices. It is demonstrated experimentally with both USAF resolution target and biological sample that, the spatial resolution of 5.52 µm and the field of view of 147.08 mm2 can be reached with the DMD based PIE method. In a word, by using the DMD to replace the translation stage, we can effectively overcome the main shortcomings of common PIE related to the mechanical scanning, while keeping its advantages on both the high resolution and large field of view.

15.
Lab Chip ; 17(1): 104-109, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27929181

RESUMO

In order to realize high contrast imaging with portable devices for potential mobile healthcare, we demonstrate a hand-held smartphone based quantitative phase microscope using the transport of intensity equation method. With a cost-effective illumination source and compact microscope system, multi-focal images of samples can be captured by the smartphone's camera via manual focusing. Phase retrieval is performed using a self-developed Android application, which calculates sample phases from multi-plane intensities via solving the Poisson equation. We test the portable microscope using a random phase plate with known phases, and to further demonstrate its performance, a red blood cell smear, a Pap smear and monocot root and broad bean epidermis sections are also successfully imaged. Considering its advantages as an accurate, high-contrast, cost-effective and field-portable device, the smartphone based hand-held quantitative phase microscope is a promising tool which can be adopted in the future in remote healthcare and medical diagnosis.


Assuntos
Microscopia de Contraste de Fase/métodos , Smartphone , Eritrócitos/citologia , Humanos , Luz , Microscopia de Contraste de Fase/instrumentação , Refratometria
16.
ScientificWorldJournal ; 2013: 245310, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24198721

RESUMO

The electrical modulation properties of the output intensity of two-photon absorption (TPA) pumping were analyzed in this paper. The frequency dispersion dependence of TPA and the electric field dependence of TPA were calculated using Wherrett theory model and Garcia theory model, respectively. Both predicted a dramatic variation of TPA coefficient which was attributed into the increasing of the transition rate. The output intensity of the laser pulse propagation in the pn junction device was calculated by using function-transfer method. It shows that the output intensity increases nonlinearly with increasing intensity of incident light and eventually reaches saturation. The output saturation intensity depends on the electric field strength; the greater the electric field, the smaller the output intensity. Consequently, the clamped saturation intensity can be controlled by the electric field. The prior advantage of electrical modulation is that the TPA can be varied extremely continuously, thus adjusting the output intensity in a wide range. This large change provides a manipulate method to control steady output intensity of TPA by adjusting electric field.


Assuntos
Equipamentos e Provisões Elétricas , Modelos Teóricos , Absorção , Desenho de Equipamento , Fótons
17.
ScientificWorldJournal ; 2013: 213091, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194676

RESUMO

The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.


Assuntos
Tecnologia de Sensoriamento Remoto/instrumentação , Semicondutores , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA