Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Prog Polym Sci ; 1482024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188703

RESUMO

The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.

2.
J Control Release ; 364: 1-11, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37858626

RESUMO

Exacerbated inflammatory responses can be detrimental and pose fatal threats to the host, as exemplified by the global impact of the COVID-19 pandemic, resulting in millions of fatalities. Developing novel drugs to combat the damaging effects of inflammation is essential for both preventive measures and therapeutic interventions. Accumulating evidence suggests that Angiotensin Converting Enzyme 2 (ACE2) possesses the ability to optimize inflammatory responses. However, the clinical applicability of this potential is limited due to the lack of dependable ACE2 activators. In this study, we conducted a screening of an FDA-approved drug library and successfully identified a novel ACE2 activator, termed H4. The activator demonstrated the capability to mitigate lung inflammation caused by bacterial lung infections, effectively modulating neutrophil infiltration. Importantly, to improve the clinical applicability of the poorly water-soluble H4, we developed a prodrug variant with significantly enhanced water solubility while maintaining a similar level of efficacy as H4 in attenuating inflammatory responses in the lungs of mice exposed to bacterial infections. This finding highlights the potential of formulated H4 as a promising candidate for the treatment and prevention of inflammatory diseases, including lung-related conditions.


Assuntos
Infecções Bacterianas , Pneumopatias , Pneumonia , Pró-Fármacos , Humanos , Camundongos , Animais , Enzima de Conversão de Angiotensina 2 , Pró-Fármacos/uso terapêutico , Peptidil Dipeptidase A/fisiologia , Pandemias , Pneumonia/tratamento farmacológico , Pulmão , Água
3.
Angew Chem Int Ed Engl ; 62(43): e202306652, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37669026

RESUMO

Nonionic hydrogels are of particular interest for long-term therapeutic implantation due to their minimal immunogenicity relative to their charged counterparts. However, in situ formation of nonionic supramolecular hydrogels under physiological conditions has been a challenging task. In this context, we report on our discovery of salt-triggered hydrogelation of nonionic supramolecular polymers (SPs) formed by self-assembling prodrug hydrogelators (SAPHs) through the Hofmeister effect. The designed SAPHs consist of two SN-38 units, which is an active metabolite of the anticancer drug irinotecan, and a short peptide grafted with two or four oligoethylene glycol (OEG) segments. Upon self-assembly in water, the resultant nonionic SPs can be triggered to gel upon addition of phosphate salts. Our 1 H NMR studies revealed that the added phosphates led to a change in the chemical shift of the methylene protons, suggestive of a disruption of the water-ether hydrogen bonds and consequent reorganization of the hydration shell surrounding the SPs. This deshielding effect, commensurate with the amount of salt added, likely promoted associative interactions among the SAPH filaments to percolate into a 3D network. The formed hydrogels exhibited a sustained release profile of SN-38 hydrogelator that acted potently against cancer cells.

4.
J Am Chem Soc ; 145(39): 21293-21302, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37747991

RESUMO

One of the main challenges in the development of long-acting injectables for HIV treatment is the limited duration of drug release, which results in the need for frequent dosing and reduced patient adherence. In this context, we leverage the intrinsic reversible features of supramolecular polymers and their unique ability to form a three-dimensional network under physiological conditions to design a class of self-assembling drug amphiphiles (DAs) based upon lamivudine, a water-soluble antiretroviral (ARV) agent and nucleoside reverse transcriptase inhibitor. The designed ARV DAs contain three pairs of alternating hydrophobic valine (V) and hydrophilic lamivudine-modified lysine (K3TC) residues with a varying number of glutamic acids (E) placed on the C-terminus. Upon dissolution in deionized water, all three ARV DAs were found to spontaneously associate into supramolecular filaments of several micrometers in length, with varying levels of lateral stacking. Addition of 1× PBS triggered immediate gelation of the two ARV DAs with 2 or 3 E residues, and upon dilution in an in vitro setting, the dissociation from the supramolecular state to the monomeric state enabled a long-acting linear release of the ARV DAs. In vivo studies further confirmed their injectability, rapid in situ hydrogel formation, enhanced local retention, and long-acting therapeutic release over a month. Importantly, our pharmacokinetic studies suggest that the injected ARV supramolecular polymeric hydrogel was able to maintain a plasma concentration of lamivudine above its IC50 value for more than 40 days in mice and showed minimal systemic immunogenicity. We believe that these results shed important light on the rational design of long-acting injectables using the drug-based molecular assembly strategy, and the reported ARV supramolecular hydrogels hold great promise for improving HIV treatment outcomes.


Assuntos
Infecções por HIV , Lamivudina , Humanos , Animais , Camundongos , Lamivudina/uso terapêutico , Infecções por HIV/tratamento farmacológico , Polímeros , Água
5.
Angew Chem Int Ed Engl ; 62(33): e202306722, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37332078

RESUMO

We herein describe the preparation, assembly, recognition characteristics, and biocompatibility of novel covalent basket cage CBC-11, composed of four molecular baskets linked to four trivalent aromatic amines through amide groups. The cage is tetrahedral in shape and similar in size to small proteins (Mw =8637 g/mol) with a spacious nonpolar interior for accommodating multiple guests. While 24 carboxylates at the outer surface of CBC-11 render it soluble in aqueous phosphate buffer (PBS) at pH=7.0, the amphiphilic nature prompts its assembly into nanoparticles (d=250 nm, DLS). Cryo-TEM examination of nanoparticles revealed their crystalline nature with wafer-like shapes and hexagonally arranged cages. Nanoparticulate CBC-11 traps anticancer drugs irinotecan and doxorubicin, with each cage binding up to four drug molecules in a non-cooperative manner. The inclusion complexation resulted in nanoparticles growing in size and precipitating. In media containing mammalian cells (HCT 116, human colon carcinoma), the IC50 value of CBC-11 was above 100 µM. While this work presents the first example of a large covalent organic cage operating in water at the physiological pH and forming crystalline nanoparticles, it also demonstrates its biocompatibility and potential to act as a polyvalent binder of drugs for their sequestration or delivery.


Assuntos
Antineoplásicos , Nanopartículas , Animais , Humanos , Água , Antineoplásicos/farmacologia , Nanopartículas/química , Proteínas , Doxorrubicina/química , Mamíferos/metabolismo
6.
Biomacromolecules ; 24(6): 2847-2855, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37257089

RESUMO

Self-sorting in functionalized dipeptide systems can be driven by the chirality of a single amino acid, both at a high pH in the micellar state and at a low pH in the gel state. The structures formed are affected to some degree by the relative concentrations of each component showing the complexity of such an approach. The structures underpinning the gel network are predefined by the micellar structures at a high pH. Here, we describe the systems prepared from two dipeptide-based gelators that differ only by the chirality of one of the amino acids. We provide firm evidence for self-sorting in the micellar and gel phases using small-angle neutron scattering and cryo-transmission electron microscopy (cryo-TEM), showing that complete self-sorting occurs across a range of relative concentrations.


Assuntos
Dipeptídeos , Micelas , Dipeptídeos/química , Microscopia Eletrônica de Transmissão , Microscopia Crioeletrônica , Aminoácidos
7.
ACS Nano ; 17(11): 10651-10664, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37212741

RESUMO

A major challenge of cancer immunotherapy is to develop delivery strategies that can effectively and safely augment the immune system's antitumor response. Here, we report on the design and synthesis of a peptide-based supramolecular filament (SF) hydrogel as a universal carrier for localized delivery of three immunomodulating agents of distinct action mechanisms and different molecular weights, including an aPD1 antibody, an IL15 cytokine, and a STING agonist (CDA). We show that in situ hydrogelation can be triggered to occur upon intratumoral injection of SF solutions containing each of aPD1, IL15, or CDA. The formed hydrogel serves as a scaffold depot for sustained and MMP-2-responsive release of immunotherapeutic agents, achieving enhanced antitumor activities and reduced side effects. When administered in combination, the aPD1/IL15 or aPD1/CDA hydrogel led to substantially increased T-cell infiltration and prevented the development of adaptive immune resistance induced by IL15 or CDA alone. These immunotherapy combinations resulted in complete regression of established large GL-261 tumors in all mice and elicited a protective long-acting and systemic antitumor immunity to prevent tumor recurrence while eradicating distant tumors. We believe this SF hydrogel offers a simple yet generalizable strategy for local delivery of diverse immunomodulators for enhanced antitumoral response and improved treatment outcomes.


Assuntos
Hidrogéis , Interleucina-15 , Animais , Camundongos , Fatores Imunológicos , Imunoterapia/métodos , Citocinas , Adjuvantes Imunológicos , Linhagem Celular Tumoral
8.
Proc Natl Acad Sci U S A ; 120(18): e2204621120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098055

RESUMO

The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Paclitaxel , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Macrófagos Associados a Tumor/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Hidrogéis/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
9.
Biomater Sci ; 11(2): 489-498, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36449365

RESUMO

The development of long-acting antiviral therapeutic delivery systems is crucial to improve the current treatment and prevention of HIV and chronic HBV. We report here on the conjugation of tenofovir (TFV), an FDA approved nucleotide reverse transcriptase inhibitor (NRTI), to rationally designed peptide amphiphiles (PAs), to construct antiviral prodrug hydrogelators (TFV-PAs). The resultant conjugates can self-assemble into one-dimensional nanostructures in aqueous environments and consequently undergo rapid gelation upon injection into 1× PBS solution to create a drug depot. The TFV-PA designs containing two or three valines could attain instantaneous gelation, with one displaying sustained release for more than 28 days in vitro. Our studies suggest that minor changes in peptide design can result in differences in supramolecular morphology and structural stability, which impacted in vitro gelation and release. We envision the use of this system as an important delivery platform for the sustained, linear release of TFV at rates that can be precisely tuned to attain therapeutically relevant TFV plasma concentrations.


Assuntos
Antivirais , Hidrogéis , Tenofovir/farmacologia , Adenina/farmacologia , Polímeros , Peptídeos
10.
Matter ; 6(2): 583-604, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36531610

RESUMO

Coronaviruses have historically precipitated global pandemics of severe acute respiratory syndrome (SARS) into devastating public health crises. Despite the virus's rapid rate of mutation, all SARS coronavirus 2 (SARS-CoV-2) variants are known to gain entry into host cells primarily through complexation with angiotensin-converting enzyme 2 (ACE2). Although ACE2 has potential as a druggable decoy to block viral entry, its clinical use is complicated by its essential biological role as a carboxypeptidase and hindered by its structural and chemical instability. Here we designed supramolecular filaments, called fACE2, that can silence ACE2's enzymatic activity and immobilize ACE2 to their surface through enzyme-substrate complexation. This docking strategy enables ACE2 to be effectively delivered in inhalable aerosols and improves its structural stability and functional preservation. fACE2 exhibits enhanced and prolonged inhibition of viral entry compared with ACE2 alone while mitigating lung injury in vivo.

11.
ACS Macro Lett ; 11(12): 1355-1361, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36413439

RESUMO

Supramolecular polymers (SPs) formed by self-assembly of peptide-based molecular units assume a variety of interesting one-dimensional (1D) morphologies. While the morphological complexity and phase behavior of self-assembling peptide conjugates bear some resemblance to those of low-molecular-weight and macromolecular surfactants, Y-junctions, or three-way connected constructs, a topological defect observed in traditional surfactants has not been identified, likely due to the intolerance of defective packing by the strong, associative interactions afforded by the peptide segments. Here we report our discovery of branched SPs with Y-junctions and occasionally enlarged spherical end-caps formed by micellization of a ferrocene-based peptide amphiphile in water. Our results suggest that the incorporation of two ferrocenes into the amphiphile design is key to ensure the formation of branched SPs. We hypothesize that the complex interplay of internal interactions limits the effective propagation of hydrogen bonding within the assemblies and, consequently, creates fragmented ß-sheets that are more tolerant for supramolecular branching. Given the redox sensitivity of the ferrocene units, sequential addition of reductants and oxidants to the solution led the assemblies to reversibly transform between branched SPs and spherical aggregates.


Assuntos
Compostos Ferrosos , Peptídeos , Peptídeos/química , Compostos Ferrosos/química , Tensoativos/química , Polímeros/química
12.
Nat Chem ; 14(12): 1427-1435, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316409

RESUMO

Peptide materials have a wide array of functions, from tissue engineering and surface coatings to catalysis and sensing. Tuning the sequence of amino acids that comprise the peptide modulates peptide functionality, but a small increase in sequence length leads to a dramatic increase in the number of peptide candidates. Traditionally, peptide design is guided by human expertise and intuition and typically yields fewer than ten peptides per study, but these approaches are not easily scalable and are susceptible to human bias. Here we introduce a machine learning workflow-AI-expert-that combines Monte Carlo tree search and random forest with molecular dynamics simulations to develop a fully autonomous computational search engine to discover peptide sequences with high potential for self-assembly. We demonstrate the efficacy of the AI-expert to efficiently search large spaces of tripeptides and pentapeptides. The predictability of AI-expert performs on par or better than our human experts and suggests several non-intuitive sequences with high self-assembly propensity, outlining its potential to overcome human bias and accelerate peptide discovery.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Humanos , Peptídeos/química , Aprendizado de Máquina , Hidrogéis/química , Aminoácidos
13.
PNAS Nexus ; 1(4): pgac147, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36082235

RESUMO

Mitochondria are critical regulators of cellular function and survival. We have previously demonstrated that functional angiotensin receptors embedded within the inner mitochondrial membrane modulate mitochondrial energy production and free radical generation. The expression of mitochondrial angiotensin II type-1 receptors increases during aging, with a complementary decrease in angiotensin II type-2 receptor density. To address this age-associated mitochondrial dysfunction, we have developed a mitochondria-targeted delivery system to effectively transport angiotensin type-1 receptor blocker-Losartan (mtLOS) into the inner mitochondrial membrane. We engineered mtLOS to become active within the mitochondria after cleavage by mitochondrial peptidases. Our data demonstrate effective and targeted delivery of mtLOS into the mitochondria, compared to a free Losartan, or Losartan conjugated to a scrambled mitochondrial target signal peptide, with significant shifts in mitochondrial membrane potential upon mtLOS treatment. Furthermore, engineered mitochondrial-targeting modalities could open new avenues to transport nonmitochondrial proteins into the mitochondria, such as other macromolecules and therapeutic agents.

14.
J Control Release ; 348: 1028-1049, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752254

RESUMO

Peptides and peptide-based materials have an increasing role in the treatment of viral infections through their use as active pharmaceutical ingredients, targeting moieties, excipients, carriers, or structural components in drug delivery systems. The discovery of peptide-based therapeutic compounds, coupled with the development of new stabilization and formulation strategies, has led to a resurgence of antiviral peptide therapeutics over the past two decades. The ability of peptides to bind cell receptors and to facilitate membrane penetration and subsequent intracellular trafficking enables their use in various antiviral systems for improved targeting efficiency and treatment efficacy. Importantly, the self-assembly of peptides into well-defined nanostructures provides a vast library of discrete constructs and supramolecular biomaterials for systemic and local delivery of antiviral agents. We review here the recent progress in exploiting the therapeutic, biological, and self-assembling potential of peptides, peptide conjugates, and their supramolecular assemblies in treating human viral infections, with an emphasis on the treatment strategies for Human Immunodeficiency Virus (HIV).


Assuntos
Nanoestruturas , Viroses , Antivirais/uso terapêutico , Materiais Biocompatíveis/química , Humanos , Nanoestruturas/química , Peptídeos/química , Peptídeos/uso terapêutico , Viroses/tratamento farmacológico
15.
Nano Lett ; 22(10): 4182-4191, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35522052

RESUMO

Spraying serves as an attractive, minimally invasive means of administering hydrogels for localized delivery, particularly due to high-throughput deposition of therapeutic depots over an entire target site of uneven surfaces. However, it remains a great challenge to design systems capable of rapid gelation after shear-thinning during spraying and adhering to coated tissues in wet, physiological environments. We report here on the use of a collagen-binding peptide to enable a supramolecular design of a biocompatible, bioadhesive, and sprayable hydrogel for sustained release of therapeutics. After spraying, the designed peptide amphiphile-based supramolecular filaments exhibit fast, physical cross-linking under physiological conditions. Our ex vivo studies suggest that the hydrogelator strongly adheres to the wet surfaces of multiple organs, and the extent of binding to collagen influences release kinetics from the gel. We envision that the sprayable organ-adhesive hydrogel can serve to enhance the efficacy of incorporated therapeutics for many biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Hidrogéis/química , Peptídeos
16.
Trends Pharmacol Sci ; 43(6): 510-521, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35459589

RESUMO

Advancements in the development of nanomaterials have led to the creation of a plethora of functional constructs as drug delivery vehicles to address many dire medical needs. The emerging prodrug strategy provides an alternative solution to create nanomedicines of extreme simplicity by directly using the therapeutic agents as molecular building blocks. This Review outlines different prodrug-based drug delivery systems, highlights the advantages of the prodrug strategy for therapeutic delivery, and demonstrates how combinations of different functionalities - such as stimuli responsiveness, targeting propensity, and multidrug conjugation - can be incorporated into designed prodrug delivery systems. Furthermore, we discuss the opportunities and challenges facing this rapidly growing field.


Assuntos
Nanopartículas , Pró-Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina
17.
Wound Repair Regen ; 29(6): 927-937, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669222

RESUMO

Chronic wounds are a common and debilitating condition associated with aging populations that impact more than 6.5 million patients in the United States. We have previously demonstrated the efficacy of daily topical 1% valsartan in treating wounds in diabetic mouse and pig models. Despite these promising results, there remains a need to develop an extended-release formulation that would reduce patient burden by decreasing the frequency of daily applications. Here, we used nanotechnology to self-assemble valsartan amphiphiles into a filamentous structure (val-filaments) that would serve as a scaffold in wound beds and allow for steady, localised and tunable release of valsartan amphiphiles over 24 days. Two topical treatments of this peptide-based hydrogel on full-thickness wounds in Zucker Diabetic Fatty rats resulted in faster rates of wound closure. By day 23, all val-filament treated wounds were completely closed, as compared to one wound closed in the placebo group. Mechanistically, we observed enrichment of proteins involved in cell adhesion and energetics pathways, downregulation of Tgf-ß signalling pathway mediators (pSmad2, pSmad3 and Smad4) and increased mitochondrial metabolic pathway intermediates. This study demonstrates the successful synthesis of a sustained-release valsartan filament hydrogel, its impact on mitochondrial energetics and efficacy in treating diabetic wounds.


Assuntos
Diabetes Mellitus , Cicatrização , Animais , Humanos , Hidrogéis , Ratos , Ratos Zucker , Valsartana/farmacologia
18.
Biomaterials ; 279: 121182, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688987

RESUMO

The clinical benefit of PD-1/PD-L1 blockade immunotherapy is substantially restricted by insufficient infiltration of T lymphocytes into tumors and compromised therapeutic effects due to immune-related adverse events following systemic administration. Some chemotherapeutic agents have been reported to trigger tumor-associated T cell responses, providing a promising strategy to achieve potent immune activation in a synergistic manner with PD-1 blockade immunotherapy. In light of this, a localized chemoimmunotherapy system was developed using an anti-cancer drug-based supramolecular polymer (SP) hydrogel to "re-edit" the host's immune system to combat cancer. This in situ forming injectable aPD1/TT6 SP hydrogel serves as a drug-delivery depot for sustained release of bioactive camptothecin (CPT) and aPD1 into the tumor microenvironment, priming the tumor for robust infiltration of tumor-associated T cells and subsequently prompting a response to the immune checkpoint blockade. Our in vivo results demonstrate that this chemoimmunotherapy hydrogel provokes a long-term and systemic anticancer T cell immune response, which elicits tumor regression while also inhibiting tumor recurrence and potential metastasis.


Assuntos
Hidrogéis , Neoplasias , Linhagem Celular Tumoral , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico , Linfócitos T , Microambiente Tumoral
19.
J Am Chem Soc ; 143(44): 18446-18453, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34711048

RESUMO

A fundamental goal in the noncovalent synthesis of ordered supramolecular polymers (SPs) is to achieve precise control over their size and size distribution; however, the reversible nature of noncovalent interactions often results in formation of living SPs with high dispersity in length. We report here on the self-limiting supramolecular polymerization (SPZ) of a series of multiarmed amphiphiles with propagation-attenuated reactivities that can automatically terminate the polymerization process, enabling effective control in both lengths and polydispersity. Through incorporating multiarmed oligoethylene-glycol (OEG) onto a quadratic aromatic segment, the lengths of the resultant SPs can be tuned from ∼1 µm to 130 and 50 nm with a polydispersity index of ∼1.2 for the last two SPs. We believe that the level of chain frustration of the multiarmed OEG segments, determined by both the number of arms and the degree of polymerization, poses physical and entropic constrains for supramolecular propagation to exceed a threshold length.

20.
Zhongguo Gu Shang ; 34(9): 866-9, 2021 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-34569214

RESUMO

OBJECTIVE: To explore effect of tobramycin (TOB) on healing of femoral fractures in rats. METHODS: Totally 32 male sprague-dawley (SD) rats were selected and randomly divided into sham group (group A), fracture group (group B), fracture with TOB group (group C) and fracture + TOB + IWR-1 group (group D), 8 rats in each group. Close femoral fracture model in rats were established in group B, C and D, group A was sham operation without otherwise process. Group D was intraperitoneal injected 100 µl (8 µM) of Wnt pathway inhibitor IWR-1-endo (IWR-1) before molding at 1 day. At 1 day after molding, 100 µl (100 µM) of TOB was intraperitoneally injected into group C and D at once a day for 7 days. At 7 weeks after modling, fracture healing of group B, C and D were observed by X-ray, Western blotting was appilied to detect alkaline phosphatase(ALP) and Runt related transcription factor 2 (RUNX2) and ß-catenin of Wnt passway. RESULTS: X-ray results showed fracture line disappeared, callus formation and fracture healing well in group C compared with begning of molding; while a little fracture line, callus formation and fracture malunion in group B and d could be seen. Western blotting results showed ALP, RUNX2 and expression of ß-catenin in group B, C and D were higher than that of group A (P<0.05), while ALP, RUNX2 and ß-catenin expression in group C was significantly higher than that of group B and D (P<0.05). After administration of pathway inhibitor IWR-1, there were no significance difference in ALP, RUNX2 and ß-catenin protein expression between group D and group B (P>0.05). CONCLUSION: Tobramycin could promote osteoblast differentiation and fracture healing by stimulating Wnt / ß-catenin signaling pathway, up regulating expression of ALP and RUNX2.


Assuntos
Fraturas do Fêmur , Via de Sinalização Wnt , Fosfatase Alcalina , Animais , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Consolidação da Fratura , Masculino , Osteogênese , Ratos , Tobramicina , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA