Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Anal Chem ; 96(19): 7730-7737, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703107

RESUMO

A highly sensitive photoacoustic detection system using a differential Helmholtz resonator (DHR) combined with a Herriott multipass cell is presented, and its implementation to sub-ppm level carbon dioxide (CO2) detection is demonstrated. Through the utilization of erbium-doped optical fiber amplifier (EDFA), the laser power was amplified to 150 mW. Within the multipass cell, a total of 22 reflections occurred, contributing to an impressive 33.6 times improvement in the system sensitivity. The normalized noise equivalent absorption coefficient (NNEA) was 8.64 × 10-11 cm-1·W·Hz-1/2 [signal-to-noise ratio, (SNR) = 1] and according to the Allan variance analysis, a minimum detection limit of 500 ppb could be achieved for CO2 at 1204 s, which demonstrates the long-term stability of the system. The system was applied to detect the respiration of rice and upland rice seeds. It is demonstrated that the system can monitor and distinguish the respiration intensity and respiration rate of different seeds in real time.

2.
Chemosphere ; 357: 142063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636912

RESUMO

Rapid and sensitive analysis of bisphenol A (BPA) is essential for preventing health risks to humans and animals. Hence, a signal-amplified electrochemical aptasensor without repetitive polishing and modification of working electrode was developed for BPA using Au-decorated magnetic reduced graphene oxide (Au/MrGO)-based recognition probe (RP) and DNA nanospheres (DNS)-based signal probe (SP) cooperative signal amplification. The DNS served as a signal molecule carrier and signal amplifier, while Au/MrGO acted as a signal amplifier and excellent medium for magnetic adsorption and separation. Moreover, utilizing the excellent magnetic properties of Au/MrGO eliminates the need for repetitive polishing and multi-step direct modification of the working electrode while ensuring that all detection processes take place in solution and that used Au/MrGO can be easily recycled. The proposed aptasensor exhibited not only good stability and selectivity, but also excellent sensitivity with a limit of detection (LOD) of 8.13 fg/mL (S/N = 3). The aptasensor's practicality was proven by spiking recovery tests on actual water samples and comparing the results with those detected by HPLC. The excellent sensitivity and selectivity make this aptasensor an alternative and promising avenue for rapid detection of BPA in environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos , Compostos Benzidrílicos , Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Ouro , Grafite , Limite de Detecção , Nanosferas , Fenóis , Grafite/química , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Fenóis/análise , Fenóis/química , Ouro/química , Nanosferas/química , Técnicas Eletroquímicas/métodos , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Poluentes Químicos da Água/análise , DNA/química
4.
Arch Toxicol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538875

RESUMO

To explore the association between apaQTL/eQTL-SNPs and the susceptibility to silicosis. A silicosis-related GWAS was initially conducted to screen for single nucleotide polymorphisms (SNPs) associated with the risk of silicosis. Candidate SNPs with apaQTL and eQTL functions were then obtained from the 3'aQTL-atlas and GTEx databases. Subsequently, additional case-control studies were performed to validate the relationship between the candidate apaQTL/eQTL-SNPs and the risk of silicosis. Finally, experiments were conducted to illustrate APA events occurring at different alleles of the identified apaQTL/eQTL-SNPs. The combined results of the GWAS and iMLDR validations indicate that the variant T allele of the rs2974341 located on SMIM19 (additive model: OR = 0.66, the 95% CI = 0.53-0.84, P = 0.001) and the variant T allele of the rs2390488 located on TMTC4 (additive model: OR = 0.72, 95% CI = 0.57-0.90, P = 0.005) were significantly associated with decreased risk of developing silicosis susceptibility. Furthermore, 3'RACE experiments verified the presence of two poly (A) sites (proximal and distal) in SMIM19, rs2974341 may remotely regulate the binding between miRNA-3646 and SMIM19 with its high LD locus rs2974353 to affect the expression level of SMIM19. The rs2974341 variant T allele may contribute to the generation of the shorter 3'UTR transcript of SMIM19 and affect the binding of miRNA-3646 to the target gene SMIM19. The apaQTL/eQTL-SNPs may provide new perspectives for evaluating the regulatory function of SNPs in the development of silicosis.

5.
Acta Biomater ; 177: 456-471, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331131

RESUMO

Cetuximab (Cet) and oxaliplatin (OXA) are used as first-line drugs for patients with colorectal carcinoma (CRC). In fact, the heterogeneity of CRC, mainly caused by K-ras mutations and drug resistance, undermines the effectiveness of drugs. Recently, a hydrophobic prodrug, (1E,4E)-6-((S)-1-(isopentyloxy)-4-methylpent-3-en-1-yl)-5,8-dimethoxynaphthalene-1,4­dione dioxime (DMAKO-20), has been shown to undergo tumor-specific CYP1B1-catalyzed bioactivation. This process results in the production of nitric oxide and active naphthoquinone mono-oximes, which exhibit specific antitumor activity against drug-resistant CRC. In this study, a Cet-conjugated bioresponsive DMAKO-20/PCL-PEOz-targeted nanocodelivery system (DMAKO@PCL-PEOz-Cet) was constructed to address the issue of DMAKO-20 dissolution and achieve multitargeted delivery of the cargoes to different subtypes of CRC cells to overcome K-ras mutations and drug resistance in CRC. The experimental results demonstrated that DMAKO@PCL-PEOz-Cet efficiently delivered DMAKO-20 to both K-ras mutant and wild-type CRC cells by targeting the epidermal growth factor receptor (EGFR). It exhibited a higher anticancer effect than OXA in K-ras mutant cells and drug-resistant cells. Additionally, it was observed that DMAKO@PCL-PEOz-Cet reduced the expression of glutathione peroxidase 4 (GPX4) in CRC cells and significantly inhibited the growth of heterogeneous HCT-116 subcutaneous tumors and patient-derived tumor xenografts (PDX) model tumors. This work provides a new strategy for the development of safe and effective approaches for treating CRC. STATEMENT OF SIGNIFICANCE: (1) Significance: This work reports a new approach for the treatment of colorectal carcinoma (CRC) using the bioresponsible Cet-conjugated PCL-PEOz/DMAKO-20 nanodelivery system (DMAKO@PCL-PEOz-Cet) prepared with Cet and PCL-PEOz for the targeted transfer of DMAKO-20, which is an anticancer multitarget drug that can even prevent drug resistance, to wild-type and K-ras mutant CRC cells. DMAKO@PCL-PEOz-Cet, in the form of nanocrystal micelles, maintained stability in peripheral blood and efficiently transported DMAKO-20 to various subtypes of colorectal carcinoma cells, overcoming the challenges posed by K-ras mutations and drug resistance. The system's secure and effective delivery capabilities have also been confirmed in organoid and PDX models. (2) This is the first report demonstrating that this approach simultaneously overcomes the K-ras mutation and drug resistance of CRC.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Sistemas de Liberação de Fármacos por Nanopartículas , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Mutação , Concentração de Íons de Hidrogênio
6.
Int J Biol Macromol ; 256(Pt 1): 127868, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939758

RESUMO

Achieving adhesion of hydrogels to universal materials with desirable strength remains a challenge despite emerging application of hydrogels. Herein we present a mussel foot protein (Mfp) inspired polyelectrolyte hydrogel of poly(ethylenimine)/poly(acrylic acid)-dopamine (PEI/PAADA) developed for universal tough adhesion. The highly-concentrated electrostatic and hydrogen-bonding interactions in PEI/PAADA hydrogel resulted in a tensile strength, strain at break, and toughness of 0.297 MPa, 2784 % and 5.440 MJ m-3, respectively. Moreover, the hydrogel can heal itself from physical damages, even can be recycled after totally dried via rehydration because of the high flexibility and reversibility of its dynamic bonds. Combining the strategies of topological stitching and direct bonding, Mfp-derived catechol and PEI/PAA backbone in PEI/PAADA corporately facilitated robust adhesion of universal materials with shear strength of up to 4.4 MPa and peeling strength of 870 J m-2, which is over 10 times greater than that of commercial fibrin gel. The adhesive also exhibited self-healing capability for at least 5 cycles, good stability in 1 M NaCl solution and characteristic debonding catalyzed by calcium. Moreover, in vitro cell behavior and in vivo wound healing assays suggested the potential of PEI/PAADA as wound dressing.


Assuntos
Bivalves , Hidrogéis , Ácidos Polimetacrílicos , Animais , Hidrogéis/química , Proteínas/química , Adesivos/química
7.
Int J Surg ; 110(2): 1052-1067, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016140

RESUMO

BACKGROUND: This study aimed to elucidate the consistency of differentially expressed hub mRNAs and proteins in lung adenocarcinoma (LUAD) across populations and to construct a comprehensive LUAD prognostic signature. METHODS: The transcriptomic and proteomics data from different populations were standardized and analyzed using the same criteria to identify the consistently differential expressed mRNAs and proteins across genders and races. We then integrated prognosis-related mRNAs with clinical, pathological, and EGFR (epidermal growth factor receptor) mutation data to construct a survival model, subsequently validating it across populations. Through plasma proteomics, plasma proteins that consistently differential expressed with LUAD tissues were screened and validated, with their associations discerned by measuring expressions in tumor tissues and tumor vascular normalization. RESULTS: The consistency rate of differentially expressed mRNAs and proteins was ~20-40%, with ethnic factors leading to about 40-60% consistency of differentially expressed mRNA or protein across populations. The survival model based on the identified eight hub mRNAs as well as stage, smoking status, and EGFR mutations, demonstrated good prognostic prediction capabilities in both Western and East Asian populations, with a higher number of unfavorable variables indicating poorer LUAD prognosis. Notably, GPI expression in tumor tissues was inversely correlated with vascular normalization and positively correlated with plasma GPI expression. CONCLUSION: Our study underscores the significance of integrating transcriptomics and proteomics data, emphasizing the need to account for genetic diversity among ethnic groups. The developed survival model may offer a holistic perspective on LUAD progression, enhancing prognosis and therapeutic strategies.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Neoplasias Pulmonares , Masculino , Feminino , Humanos , Prognóstico , Adenocarcinoma de Pulmão/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética
8.
Environ Res ; 245: 118056, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157958

RESUMO

A good old gateway theory that electronic-cigarettes (e-cigarettes) are widely recognized as safer tobacco substitutes. In actuality, demographics also show that vaping cannibalizes smoking, the best explanation of the data is the "common liability". However, the utilization of e-cigarette products remains a controversial topic at present. Currently, there has been a widespread and substantial growth in e-cigarette use worldwide owing to their endless new flavors and customizable characteristics. Furthermore, e-cigarette has grown widespread among smokers as well as non-smokers, including adolescents and young adults. And some studies have shown that e-cigarette users are at greater risk to start using combustible cigarettes while e-cigarettes use was also observed the potential benefits to people who want to quit smoking or not. Although it is true that e-cigarettes generally contain fewer toxic substances than combustible cigarettes, this does not mean that the chemical composition in e-cigarettes aerosols poses absolutely no risks. While concerns about toxic substances in e-cigarettes and their widespread use in the population are reasonable, it is also crucial to consider that e-cigarettes have been associated with the potential for promoting smoking cessation and the clinically relevant improvements in users with smoking-related pathologies. Meanwhile, there is still short of understanding of the health impacts associated with e-cigarette use. Therefore, in this review, we discussed the health impacts of e-cigarette exposure on oral, nasal, pulmonary, cardiovascular systems and brain. We aspire for this review to change people's previous perceptions of e-cigarettes and provide them with a more balanced perspective. Additionally, we suggest appropriate adjustments on regulation and policy for e-cigarette to gain greater public health benefits.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Adolescente , Adulto Jovem , Humanos , Fumar/epidemiologia , Fumar Tabaco , Eletrônica
9.
Chemosphere ; 350: 141004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141682

RESUMO

Polychlorinated naphthalenes (PCNs) were characterized as persistent organic pollutants (POPs) that were widely distributed in the environment. Although the striking in vivo toxicity of these pollutants towards both animals and humans was well documented, their cytotoxicity and mechanism of action have not been extensively investigated. In this study, the in vitro antiproliferative activity of mono- and di-chloronaphthalenes as representative PCNs were evaluated and the results indicated strong growth inhibitory effects against mammalian cells, especially the human breast MCF-10A cell and human hepatic HL-7702 cells. 2-Chloronaphthalene with the most potent antiproliferative effects within the tested PCNs, which showed IC50 values ranging from 0.3 mM to 1.5 mM against selected human cell lines, was investigated for its working mechanisms. It promoted cellular apoptosis of MCF-10A cells upon the concentration of 200 µM. It also induced the autophagy of MCF-10A cells in a dose-dependent manner, resulting in cell death via the interaction of autophagy and apoptosis. Thus, these findings supported the theoretical foundation for interventional treatment of PCNs toxicity and also provided implications for the use of chemopreventive agents against the toxic chlorinated naphthalenes in the environments.


Assuntos
Poluentes Ambientais , Animais , Humanos , Poluentes Ambientais/análise , Fígado/química , Naftalenos/toxicidade , Naftalenos/análise , Apoptose , Mamíferos
10.
ACS Appl Mater Interfaces ; 15(51): 59826-59837, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38098133

RESUMO

Universal adhesion of hydrogels to diverse materials is essential to their extensive applications. Unfortunately, tough adhesion of wet surfaces remains an urgent challenge so far, requiring robust cohesion strength for effective stress dissipation. In this work, a dual-network hydrogel polyethylenimine-poly(acrylic acid)/alginate (PEI-PAA/Alg) with excellent mechanical strength is realized via PEI-PAA complex and calcium alginate coordination for universal adhesion by the synergistic effort of topological entanglement and catechol chemistry. The dual networks of PEI-PAA/Alg provide mechanically reinforced cohesion strength, which is sufficient for energy dissipation during adhesion with universal materials. After the integration of mussel-inspired dopamine into PAA or Alg, the adhesive demonstrates further improved adhesion performance with a solid adherend and capability to bond cancellous bones. Notably, the dopamine-modified adhesive exhibits better instant adhesion and reversibility with wet surfaces compared with commercial fibrin. Adhesion interfaces are investigated by SEM and micro-FTIR to verify the effectiveness of strategies of topological entanglement. Furthermore, the adhesive also possesses great injectability, stability, tissue adhesion, and biocompatibility. In vivo wound healing and histological analysis indicate that the hydrogel can promote wound closure, epidermis regeneration, and tissue refunctionalization, implying its potential application for bioadhesive and wound dressing.


Assuntos
Adesivos , Adesivos Teciduais , Adesivos/química , Hidrogéis/farmacologia , Hidrogéis/química , Adesivos Teciduais/farmacologia , Adesivos Teciduais/química , Dopamina , Catecóis/química , Alginatos/química
11.
J Med Chem ; 66(23): 16032-16050, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38031326

RESUMO

Cytochrome P450 1B1 (CYP1B1) is induced during the early stage of cancer and is universally overexpressed in tumors. Thus, it was considered as a potential biomarker for the monitoring of cancer. In this study, we designed and synthesized CYP1B1-targeted near-infrared (NIR) fluorescence molecular probes based on the latest reported open conformation of the CYP1B1-α-naphthoflavone (ANF) complex. According to the architecture of the open channel, we introduced linkers and a Cy5.5 fragment at the 5' position of ANF derivatives with strong CYP1B1 inhibitory activity to obtain probes 19-21. Then, in vitro cell-based studies showed that the probes could be enriched in tumor cells by binding to CYP1B1. During in vivo and ex vivo imaging in a xenograft mouse model, probe 19 with the best binding affinity was proven to be able to identify tumor sites in both fluorescence imaging and photoacoustic imaging modes.


Assuntos
Neoplasias Colorretais , Humanos , Animais , Camundongos , Citocromo P-450 CYP1B1/química , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Sondas Moleculares , Imagem Molecular
12.
iScience ; 26(11): 108068, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37860689

RESUMO

The role of alternative polyadenylation (APA) in tumor development is becoming increasingly evident, but the impact of APA events on the prognosis of LUAD patients is unclear. Therefore, in the present study, we aimed to analyze specific APA events in LUAD to identify novel prognostic biomarkers for LUAD. We first identified prognostic candidate genes for LUAD associated with APA events and validated them in both the East Asian and the USA cohorts, finding that five genes (DCUN1D5, PSMC4, TFAM, THRA, and TMEM100) were of prognostic significance in both populations. Based on this, an APA-based prognostic signature was constructed for the East Asian population. The predictive accuracy of the prognostic signature was further evaluated by the time-dependent ROC, with 1-, 2-, and 3-year AUCs of 0.86, 0.81, and 0.71, respectively. This study may provide new markers for individualized diagnosis and prognostic assessment of LUAD and potential targets for precision treatment.

13.
Chemosphere ; 339: 139708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37536533

RESUMO

Triclosan (TCS), a broad-spectrum antibacterial chemical, has been extensively used in personal daily care items, household commodities, and clinical medications; therefore, humans are at risk of being exposed to TCS in their daily lives. This chemical also accumulated in food chains, and potential risks were associated with its metabolism in vivo. The aim of this study was to investigate the difference in metabolic profile of TCS by hepatic P450 enzymes and extrahepatic P450s, and also identify chemical structures of its metabolites. The results showed that RLM mediated the hydroxylation and cleavage of the ether moiety of TCS, resulting in phenolic metabolites that are more polar than the parent compound, including 4-chlorocatechol, 2,4-dichlorophenol and monohydroxylated triclosan. The major metabolite of CYP1A1 and CYP1B1 mediated TCS metabolism is 4-chlorochol. We also performed molecular docking experiments to investigate possible binding modes of TCS in the active sites of human CYP1B1, CYP1A1, and CYP3A4. In addition to in vitro experiments, we further examined the cytotoxic effects of TCS on HepG2 cells expressing hepatic P450 and MCF-7/1B1 cells expressing CYP1B1. It exhibited significant cytotoxicity on HepG2, MCF-10A and MCF-7/1B1 cells, with IC50 values of 70 ± 10 µM, 20 ± 10 µM and 60 ± 20 µM, respectively. The co-incubation of TCS with glutathione (GSH) as a chemopreventive agent could reduce the cytotoxicity of TCS in vitro. The chemopreventive effects of GSH might be ascribed to the promotion of TCS efflux mediated by membrane transporter MRP1 and also its antioxidant property, which partially neutralized the oxidative stress of TCS on mammalian cells. This study contributed to our understanding of the relationship between the P450 metabolism and the toxicity of TCS. It also had implications for the use of specific chemopreventive agents against the toxicity of TCS.


Assuntos
Triclosan , Animais , Humanos , Triclosan/toxicidade , Triclosan/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Simulação de Acoplamento Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Fenóis , Quimioprevenção , Mamíferos/metabolismo
14.
J Med Chem ; 66(12): 8011-8029, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37272653

RESUMO

Bombesin receptor subtype-3 (BB3, BRS-3) is an orphan Gαq protein-coupled receptor. The characterization of novel synthetic ligands for BB3 is an alternative and attractive strategy to study its diverse physiological functions. Here, we uncovered the intimate pairing of DMAKO-00 and its derivatives with BB3. Dimethyl shikonin oxime 5a (DSO-5a) was identified as the most potent agonist for BB3 (pEC50 = 8.422 in IP-1 accumulation), which was 898-fold more potent than DMAKO-00. Importantly, without brain penetration, DSO-5a improved glucose tolerance in C57BL/6 mice through BB3 and ameliorated glucose homeostasis in diabetic db/db mice. We further revealed that DSO-5a upregulated PPAR-gamma activity via BB3 through a quantitative proteomics approach. Collectively, our study demonstrated that DSO-5a, a representative compound of DMAKO-00 derivatives, is a potent, selective, and low-brain-penetrating agonist for BB3, and BB3 is a promising treatment target for type 2 diabetes mellitus.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores da Bombesina , Camundongos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos Endogâmicos C57BL , Glucose , Bombesina
15.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37192004

RESUMO

Tumor vascular normalization prevents tumor cells from breaking through the basement membrane and entering the vasculature, thereby inhibiting metastasis initiation. In this study, we report that the antitumor peptide JP1 regulated mitochondrial metabolic reprogramming through AMPK/FOXO3a/UQCRC2 signaling, which improved the tumor microenvironment hypoxia. The oxygen-rich tumor microenvironment inhibited the secretion of IL-8 by tumor cells, thereby promoting tumor vascular normalization. The normalized vasculature resulted in mature and regular blood vessels, which made the tumor microenvironment form a benign feedback loop consisting of vascular normalization, sufficient perfusion, and an oxygen-rich microenvironment, prevented tumor cells from entering the vasculature, and inhibited metastasis initiation. Moreover, the combined therapy of JP1 and paclitaxel maintained a certain vascular density in the tumor and promoted tumor vascular normalization, increasing the delivery of oxygen and drugs and enhancing the antitumor effect. Collectively, our work highlights the antitumor peptide JP1 as an inhibitor of metastasis initiation and its mechanism of action.


Assuntos
Interleucina-8 , Neoplasias , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Neovascularização Patológica/patologia , Neoplasias/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Oxigênio , Microambiente Tumoral
16.
Cancers (Basel) ; 15(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37173894

RESUMO

BACKGROUND: Nicotinamide mononucleotide (NMN) is the physiological circulating NAD precursor thought to elevate the cellular level of NAD+ and to ameliorate various age-related diseases. An inseparable link exists between aging and tumorigenesis, especially involving aberrant energetic metabolism and cell fate regulation in cancer cells. However, few studies have directly investigated the effects of NMN on another major ageing-related disease: tumors. METHODS: We conducted a series of cell and mouse models to evaluate the anti-tumor effect of high-dose NMN. Transmission electron microscopy and a Mito-FerroGreen-labeled immunofluorescence assay (Fe2+) were utilized to demonstrate ferroptosis. The metabolites of NAM were detected via ELISA. The expression of the proteins involved in the SIRT1-AMPK-ACC signaling were detected using a Western blot assay. RESULTS: The results showed that high-dose NMN inhibits lung adenocarcinoma growth in vitro and in vivo. Excess NAM is produced through the metabolism of high-dose NMN, whereas the overexpression of NAMPT significantly decreases intracellular NAM content, which, in turn, boosts cell proliferation. Mechanistically, high-dose NMN promotes ferroptosis through NAM-mediated SIRT1-AMPK-ACC signaling. CONCLUSIONS: This study highlights the tumor influence of NMN at high doses in the manipulation of cancer cell metabolism, providing a new perspective on clinical therapy in patients with lung adenocarcinoma.

17.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240137

RESUMO

Lung adenocarcinoma (LUAD) is the most common lung cancer, with high mortality. As a tumor-suppressor gene, JWA plays an important role in blocking pan-tumor progression. JAC4, a small molecular-compound agonist, transcriptionally activates JWA expression both in vivo and in vitro. However, the direct target and the anticancer mechanism of JAC4 in LUAD have not been elucidated. Public transcriptome and proteome data sets were used to analyze the relationship between JWA expression and patient survival in LUAD. The anticancer activities of JAC4 were determined through in vitro and in vivo assays. The molecular mechanism of JAC4 was assessed by Western blot, quantitative real-time PCR (qRT-PCR), immunofluorescence (IF), ubiquitination assay, co-immunoprecipitation, and mass spectrometry (MS). Cellular thermal shift and molecule-docking assays were used for confirmation of the interactions between JAC4/CTBP1 and AMPK/NEDD4L. JWA was downregulated in LUAD tissues. Higher expression of JWA was associated with a better prognosis of LUAD. JAC4 inhibited LUAD cell proliferation and migration in both in-vitro and in-vivo models. Mechanistically, JAC4 increased the stability of NEDD4L through AMPK-mediated phosphorylation at Thr367. The WW domain of NEDD4L, an E3 ubiquitin ligase, interacted with EGFR, thus promoting ubiquitination at K716 and the subsequent degradation of EGFR. Importantly, the combination of JAC4 and AZD9191 synergistically inhibited the growth and metastasis of EGFR-mutant lung cancer in both subcutaneous and orthotopic NSCLC xenografts. Furthermore, direct binding of JAC4 to CTBP1 blocked nuclear translocation of CTBP1 and then removed its transcriptional suppression on the JWA gene. The small-molecule JWA agonist JAC4 plays a therapeutic role in EGFR-driven LUAD growth and metastasis through the CTBP1-mediated JWA/AMPK/NEDD4L/EGFR axis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proliferação de Células , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica
18.
Acta Pharmacol Sin ; 44(4): 897-912, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36280689

RESUMO

Anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular eye diseases, but responses are incomplete in some patients. Recent evidence shows that integrins are involved in the pathogenesis of neovascular age-related macular degeneration and diabetic retinopathy. JP1, derived from an optimized seven-amino-acid fragment of JWA protein, is a polypeptide specifically targeting integrin αVß3. In this study we evaluated the efficacy of JP1 on laser-induced choroidal neovascularization (CNV) and retinal vascular leakage. CNV mice received a single intravitreal (IVT) injection of JP1 (10, 20, 40 µg) or ranibizumab (RBZ, 10 µg). We showed that JP1 injection dose-dependently inhibited laser-induced CNV; the effect of RBZ was comparable to that of 20 µg JP1; a combined IVT injection of JP1 (20 µg) and RBZ (5 µg) exerted a synergistic effect on CNV. In the 3rd month after streptozotocin injection, diabetic mice receiving IVT injection of JP1 (40 µg) or RBZ (10 µg) once a week for 4 weeks showed significantly suppressed retinal vascular leakage. In both in vivo and in vitro experiments, JP1 counteracted oxidative stress and inflammation via inhibiting ROS/NF-κB signaling in microglial cells, and angiogenesis via modulating MEK1/2-SP1-integrin αVß3 and TRIM25-SP1-MMP2 axes in vascular endothelial cells. In addition, intraperitoneal injection of JP1 (1, 5 or 10 mg) once every other day for 3 times also dose-dependently inhibited CNV. After intraperitoneal injection of FITC-labeled JP1 (FITC-JP1) or FITC in laser-induced CNV mice, the fluorescence intensity in the CNV lesion was markedly increased in FITC-JP1 group, compared with that in FITC group, confirming that JP1 could penetrate the blood-retinal barrier to target CNV lesion. We conclude that JP1 can be used to design novel CNV-targeting therapeutic agents that may replace current invasive intraocular injections.


Assuntos
Neovascularização de Coroide , Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Camundongos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fluoresceína-5-Isotiocianato/uso terapêutico , Integrina alfaVbeta3/uso terapêutico , Peptídeos/uso terapêutico
19.
Front Environ Sci Eng ; 17(3): 31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36313056

RESUMO

The diverse and large-scale application of disinfectants posed potential health risks and caused ecological damage during the 2019-nCoV pandemic, thereby increasing the demands for the development of disinfectants based on natural products, with low health risks and low aquatic toxicity. In the present study, a few natural naphthoquinones and their derivatives bearing the 1,4-naphthoquinone skeleton were synthesized, and their antibacterial activity against selected bacterial strains was evaluated. In vitro antibacterial activities of the compounds were investigated against Escherichia coli and Staphylococcus aureus. Under the minimum inhibitory concentration (MIC) of ⩽ 0.125 µmol/L for juglone (1a), 5,8-dimethoxy-1,4-naphthoquinone (1f), and 7-methyl-5-acetoxy-1,4-naphthoquinone (3c), a strong antibacterial activity against S. aureus was observed. All 1,4-naphthoquinone derivatives exhibited a strong antibacterial activity, with MIC values ranging between 15.625 and 500 µmol/L and EC50 values ranging between 10.56 and 248.42 µmol/L. Most of the synthesized compounds exhibited strong antibacterial activities against S. aureus. Among these compounds, juglone (1a) showed the strongest antibacterial activity. The results from mechanistic investigations indicated that juglone, a natural naphthoquinone, caused cell death by inducing reactive oxygen species production in bacterial cells, leading to DNA damage. In addition, juglone could reduce the self-repair ability of bacterial DNA by inhibiting RecA expression. In addition to having a potent antibacterial activity, juglone exhibited low cytotoxicity in cell-based investigations. In conclusion, juglone is a strong antibacterial agent with low toxicity, indicating that its application as a bactericidal agent may be associated with low health risks and aquatic toxicity. Electronic Supplementary Material: Supplementary material is available in the online version of this article at 10.1007/s11783-023-1631-2 and is accessible for authorized users.

20.
Chemosphere ; 311(Pt 2): 137154, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36351468

RESUMO

Bisphenol A (BPA) is a harmful endocrine disruptor, sensitive and rapid quantification of BPA is highly desirable. In this work, a novel synergistic signal-amplifying electrochemical biosensor was developed for BPA detection by using a recognition probe (RP) constructed by BPA aptamer modified gold nanoparticles-loaded magnetic reduced graphene oxide (Aptamer-MrGO@AuNPs), and a signal probe (SP) constructed by BPA aptamer-complementary single-stranded DNA (ssDNA) functionalized methylene blue (MB)-loaded gold nanoparticle (ssDNA-AuNP@MBs). The RP and SP can self-assemble to form a stable RP-SP complex through complementary base pairing. The current intensity of the biosensor correlates with the number of RP-SP complexes. In the presence of BPA, the BPA aptamer can capture BPA with high selectivity and affinity, form an RP-BPA complex and dissociate the RP-SP complex to release SP, resulting in a decrease in the current signal intensity of the biosensor. A single AuNP could be loaded with multiple BPA aptamers and MBs, which improves the recognition efficiency and enhances the signal intensity. Due to the magnetic properties of MrGO@AuNPs, the magnetic separation and adsorption of RP or RP-SP complex is very convenient, enabling all reaction processes to be carried out in solution, which not only improves the mass transfer efficiency, but also simplifies the operation. Under optimal conditions, the developed biosensor had a detection limit as low as 0.141 pg/mL and had been successfully applied to the detection of real environmental water samples. Therefore, the synergistic signal amplification strategy of RP and SP has potential value in the detection of trace pollutants in the water environment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro/química , DNA de Cadeia Simples , Aptâmeros de Nucleotídeos/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos , DNA Complementar , Água , Técnicas Eletroquímicas/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA