Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 304: 120474, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641191

RESUMO

A novel flocculation strategy for simultaneously removing Microcystis aeruginosa and algal organic matter (AOM) was proposed using chitosan-amphoteric starch (C-A) dual flocculants in an efficient, cost-effective and ecologically friendly way, providing new insights for harmful algal blooms (HABs) control. A dual-functional starch-based flocculant, amphoteric starch (AS) with high anion degree of substitution (DSA) and cation degree of substitution (DSC), was prepared using a cationic moiety of 3-chloro-2-hydroxypropyltrimethylammonium chloride (CTA) coupled with an anion moiety of chloroacetic acid onto the backbone of starch simultaneously. In combination of the results of FTIR, XPS, 1H NMR, 13C NMR, GPC, EA, TGA and SEM, it was evidenced that the successfully synthesized AS with excellent structural characteristics contributed to the enhanced flocculation of M. aeruginosa. Furthermore, the novel C-A dual flocculants could achieve not only the removal of >99.3 % of M. aeruginosa, but also the efficacious flocculation of algal organic matter (AOM) at optimal concentration of (0.8:24) mg/L, within a wide pH range of 3-11. The analysis of zeta potential and cellular morphology revealed that the dual effects of both enhanced charge neutralization and notable netting-bridging played a vital role in efficient M. aeruginosa removal.


Assuntos
Quitosana , Microcystis , Amido , Floculação , Proliferação Nociva de Algas , Cátions
2.
Cancer Cell Int ; 22(1): 44, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093077

RESUMO

BACKGROUND: Malignant melanoma (MM) is highly metastatic and has the highest mortality rate in patients with skin cancer. The ERBB3 binding protein 1 (Ebp1) has been linked to the onset and progression of a number of malignancies. However, the role of Ebp1 in MM has not yet been reported. METHODS: Multiple databases were analyzed for comparing the expression of Ebp1 in normal skin and MM. Ebp1 expression was knocked down in A375 and B16 cells, and the impact of Ebp1 on the cell growth was tested by CCK-8, plate clone colony, and cell cycle assays. Scratch, transwell, and in vivo caudal vein lung metastasis tests were also used to confirm the effects of Ebp1 on melanoma cells migration, invasion, and metastasis. Furthermore, the possible molecular mechanism of Ebp1 was predicted by set enrichment analysis and verified by western blotting. RESULTS: Ebp1 expression was substantially higher in MM than it was in normal skin, and Ebp1 was linked to the clinical stage and lymph node metastases of patients with MM. Knockdown of Ebp1 inhibited cell proliferation, migration, and invasion. In vivo experiments further verified that the knockdown of Ebp1 had an obvious inhibitory effect on lung metastasis in nude mice. Knockdown of Ebp1 reduced vimentin, N-cadherin, slug, and snail expression while increasing E-cadherin expression. Furthermore, knockdown of Ebp1 reduced the expression of ß-catenin, as well as its downstream targets CyclinD1 and p-GSK3ß; however, a Wnt/ß-catenin agonist could reverse this effect. CONCLUSION: Ebp1 may promote the proliferation and metastasis of melanoma cells through activation of the Wnt/ß-catenin pathway.

3.
ACS Omega ; 6(49): 33961-33968, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34926943

RESUMO

In this study, Cu-BTC, a kind of metal-organic framework, was used as an adsorbent to selectively adsorb methylene blue (abbreviated as MB) from dye mixed wastewater. The synthesized Cu-BTC was characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicated that the synthesized Cu-BTC have an octahedral structure, with its specific surface area at 45.16 m2/g and the pore sizes at 35-40 nm. The influence of various parameters including the initial solution pH, temperature, ionic strength, initial concentration, and contact time on MB adsorption by Cu-BTC was investigated in detail. The adsorption capacity of Cu-BTC toward MB was optimized at the pH value of 8, with a lower temperature and a higher ionic strength. The adsorption isotherm was found to fit well with the Langmuir model, and the kinetic curve was found to be in good agreement with the pseudo-second-order kinetic model. The adsorption mechanism was revealed to be the combined effects of hydrophobicity and electrostatic adsorption. The synthesized Cu-BTC adsorption material showed great potential for recovering MB from dye-mixed wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA