Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 214: 108878, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38968841

RESUMO

In this paper, we discussed the physiological mechanism of enhanced chilling tolerance with combined treatment of nitric oxide (NO) and reduced glutathione (GSH) in cucumber seedlings. With prolonged low temperature (10 °C/6 °C), oxidative stress improved, which was manifested as an increase the hydrogen peroxide (H2O2) and malondialdehyde (MDA), causing cell membrane damage, particularly after 48 h of chilling stress. Exogenous sodium nitroprusside (SNP, NO donor) enhanced the activity of nitric oxide synthase NOS-like, the contents of GSH and polyamines (PAs), and the cellular redox state, thus regulating the activities of mitochondrial oxidative phosphorylation components (CI, CII, CIV, CV). However, buthionine sulfoximine (BSO, a GSH synthase inhibitor) treatment drastically reversed or attenuated the effects of NO. Importantly, the combination of SNP and GSH treatment had the best effect in alleviating chilling-induced oxidative stress by upregulating the activities of antioxidant enzyme, including superoxidase dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) and improved the PAs content, thereby increased activities of CI, CII, CIII, CIV, and CV. This potentially contributes to the maintenance of oxidative phosphorylation originating from mitochondria. In addition, the high activity of S-nitrosoglutathione reductase (GSNOR) in the combined treatment of SNP and GSH possibly mediates the conversion of NO and GSH to S-nitrosoglutathione. Our study revealed that the combined treatment with NO and GSH to synergistically improve the cold tolerance of cucumber seedlings under prolonged low-temperature stress.

2.
Plants (Basel) ; 13(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931104

RESUMO

In this study, processing tomato (Solanum lycopersicum L.) 'Ligeer 87-5' was hydroponically cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis, osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA treatment). The results demonstrated that exogenous AsA significantly increased the activities and gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state. Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and transcription levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.

3.
Plants (Basel) ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987066

RESUMO

This study investigated the protective effects of exogenous ascorbic acid (AsA, 0.5 mmol·L-1) treatment on salt-induced photosystem inhibition in tomato seedlings under salt stress (NaCl, 100 mmol·L-1) conditions with and without the AsA inhibitor lycorine. Salt stress reduced the activities of photosystem II (PSII) and PSI. AsA treatment mitigated inhibition of the maximal photochemical efficiency of PSII (Fv/Fm), maximal P700 changes (Pm), the effective quantum yields of PSII and I [Y(II) and Y(I)], and non-photochemical quenching coefficient (NPQ) values under salt stress conditions both with and without lycorine. Moreover, AsA restored the balance of excitation energy between two photosystems (ß/α-1) after disruption by salt stress, with or without lycorine. Treatment of the leaves of salt-stressed plants with AsA with or without lycorine increased the proportion of electron flux for photosynthetic carbon reduction [Je(PCR)] while decreasing the O2-dependent alternative electron flux [Ja(O2-dependent)]. AsA with or without lycorine further resulted in increases in the quantum yield of cyclic electron flow (CEF) around PSI [Y(CEF)] while increasing the expression of antioxidant and AsA-GSH cycle-related genes and elevating the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG). Similarly, AsA treatment significantly decreased the levels of reactive oxygen species [superoxide anion (O2-) and hydrogen peroxide (H2O2)] in these plants. Together, these data indicate that AsA can alleviate salt-stress-induced inhibition of PSII and PSI in tomato seedlings by restoring the excitation energy balance between the photosystems, regulating the dissipation of excess light energy by CEF and NPQ, increasing photosynthetic electron flux, and enhancing the scavenging of reactive oxygen species, thereby enabling plants to better tolerate salt stress.

4.
Front Plant Sci ; 13: 1029854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407604

RESUMO

In this study, the differences in chlorophyll fluorescence transient (OJIP) and modulated 820 nm reflection (MR820) of cucumber leaves were probed to demonstrate an insight into the precise influence of melatonin (MT) on cucumber photosystems under low temperature stress. We pre-treated cucumber seedlings with different levels of MT (0, 25, 50, 100, 200, and 400 µmol · L-1) before imposing low temperature stress (10 °C/6 °C). The results indicated that moderate concentrations of MT had a positive effect on the growth of low temperature-stressed cucumber seedlings. Under low temperature stress conditions, 100 µmol · L-1 (MT 100) improved the performance of the active photosystem II (PSII) reaction centers (PIabs), the oxygen evolving complex activity (OEC centers) and electron transport between PSII and PSI, mainly by decreasing the L-band, K-band, and G-band, but showed differences with different duration of low temperature stress. In addition, these indicators related to quantum yield and energy flux of PSII regulated by MT indicated that MT (MT 100) effectively protected the electron transport and energy distribution in the photosystem. According to the results of WO-I ≥ 1 and MR820 signals, MT also affected PSI activity. MT 100 decreased the minimal value of MR/MRO and the oxidation rate of plastocyanin (PC) and PSI reaction center (P700) (Vox ), while increased △MRslow/MRO and deoxidation rates of PC+ and P700 + (Vred ). The loss of the slow phase of MT 200 and MT 400-treated plants in the MR820 kinetics was due to the complete prevention of electron movement from PSII to re-reduce the PC+ and P700 +. These results suggest that appropriate MT concentration (100 µmol · L-1) can improve the photosynthetic performance of PS II and electron transport from primary quinone electron acceptor (QA) to secondary quinone electron acceptor (QB), promote the balance of energy distribution, strengthen the connectivity of PSI and PSII, improve the electron flow of PSII via QA to PC+ and P700 + from reaching PSI by regulating multiple sites of electron transport chain in photosynthesis, and increase the pool size and reduction rates of PSI in low temperature-stressed cucumber plants, All these modifications by MT 100 treatment promoted the photosynthetic electron transfer smoothly, and further restored the cucumber plant growth under low temperature stress. Therefore, we conclude that spraying MT at an appropriate concentration is beneficial for protecting the photosynthetic electron transport chain, while spraying high concentrations of MT has a negative effect on regulating the low temperature tolerance in cucumber.

5.
Foods ; 11(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230224

RESUMO

Browning is one of the major effects of shelf-life responsible for the reduction in the commercial value of the button mushrooms (Agaricus bisporus). In this study, the individual and the combined effects of exogenous sodium nitroprusside (SNP, a nitric oxide donor) and 1-methylcyclopropene (1-MCP) on the quality of button mushrooms were evaluated. The results demonstrated that mushrooms treated with SNP+1-MCP promoted reactive oxygen species (ROS) metabolism thereby protecting cell membrane integrity, hindering polyphenol oxidase (PPO) binding to phenolic compounds, and downregulating the PPO activity. In addition, the SNP+1-MCP treatment effectively maintained quality (firmness, color, total phenol, and flavonoid) and mitigated oxidative damage by reducing ROS accumulation and malondialdehyde production through the stimulation of the antioxidant enzymes activities and the enhancement of ascorbic acid (AsA) and glutathione (GSH) contents. Moreover, the correlation analysis validated the above results. The SNP+1-MCP treatment was observed to be more prominent on maintaining quality than the individual effects of SNP followed by 1-MCP, suggesting that the combination of NO and 1-MCP had synergistic effects in retarding button mushrooms senescence, and NO signaling molecules might be predominant in the synergy.

6.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628425

RESUMO

Cucumber (Cucumis sativus L.) is one of the most popular cultivated vegetable crops but it is intrinsically sensitive to cold stress due to its thermophilic nature. To explore the molecular mechanism of plant response to low temperature (LT) and the mitigation effect of exogenous nitric oxide (NO) on LT stress in cucumber, transcriptome changes in cucumber leaves were compared. The results showed that LT stress regulated the transcript level of genes related to the cell cycle, photosynthesis, flavonoid accumulation, lignin synthesis, active gibberellin (GA), phenylalanine metabolism, phytohormone ethylene and salicylic acid (SA) signaling in cucumber seedlings. Exogenous NO improved the LT tolerance of cucumber as reflected by increased maximum photochemical efficiency (Fv/Fm) and decreased chilling damage index (CI), electrolyte leakage and malondialdehyde (MDA) content, and altered transcript levels of genes related to phenylalanine metabolism, lignin synthesis, plant hormone (SA and ethylene) signal transduction, and cell cycle. In addition, we found four differentially expressed transcription factors (MYB63, WRKY21, HD-ZIP, and b-ZIP) and their target genes such as the light-harvesting complex I chlorophyll a/b binding protein 1 gene (LHCA1), light-harvesting complex II chlorophyll a/b binding protein 1, 3, and 5 genes (LHCB1, LHCB3, and LHCB5), chalcone synthase gene (CSH), ethylene-insensitive protein 3 gene (EIN3), peroxidase, phenylalanine ammonia-lyase gene (PAL), DNA replication licensing factor gene (MCM5 and MCM6), gibberellin 3 beta-dioxygenase gene (GA3ox), and regulatory protein gene (NPRI), which are potentially associated with plant responses to NO and LT stress. Notably, HD-ZIP and b-ZIP specifically responded to exogenous NO under LT stress. Taken together, these results demonstrate that cucumber seedlings respond to LT stress and exogenous NO by modulating the transcription of some key transcription factors and their downstream genes, thereby regulating photosynthesis, lignin synthesis, plant hormone signal transduction, phenylalanine metabolism, cell cycle, and GA synthesis. Our study unveiled potential molecular mechanisms of plant response to LT stress and indicated the possibility of NO application in cucumber production under LT stress, particularly in winter and early spring.


Assuntos
Cucumis sativus , Clorofila A/metabolismo , Cucumis sativus/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/metabolismo , Giberelinas/farmacologia , Lignina/metabolismo , Óxido Nítrico/metabolismo , Fenilalanina/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/metabolismo , Plântula , Temperatura , Fatores de Transcrição/metabolismo
7.
Front Plant Sci ; 12: 594400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484251

RESUMO

In this study, the protective role of exogenous ascorbic acid (AsA) on salt-induced inhibition of photosynthesis in the seedlings of processing tomatoes under salt stress has been investigated. Plants under salt stress (NaCl, 100 mmol/L) were foliar-sprayed with AsA (0.5 mmol/L), lycorine (LYC, 0.25 mmol/L, an inhibitor of key AsA synthesis enzyme l-galactono-γ-lactone dehydrogenase activity), or AsA plus LYC. The effects of AsA on fast OJIP fluorescence rise curve and JIP parameters were then examined. Our results demonstrated that applying exogenous AsA significantly changed the composition of O-J-I-P fluorescence transients in plants subjected to salt stress both with and without LYC. An increase in basal fluorescence (F o) and a decrease in maximum fluorescence (F m) were observed. Lower K- and L-bands and higher I-band were detected on the OJIP transient curves compared, respectively, with salt-stressed plants with and without LYC. AsA application also significantly increased the values of normalized total complementary area (Sm), relative variable fluorescence intensity at the I-step (VI), absorbed light energy (ABS/CSm), excitation energy (TRo/CSm), and reduction energy entering the electron transfer chain beyond QA (ETo/CSm) per reaction centre (RC) and electron transport flux per active RC (ETo/RC), while decreasing some others like the approximated initial slope of the fluorescence transient (Mo), relative variable fluorescence intensity at the K-step (VK), average absorption (ABS/RC), trapping (TRo/RC), heat dissipation (DIo/RC) per active RC, and heat dissipation per active RC (DIo/CSm) in the presence or absence of LYC. These results suggested that exogenous AsA counteracted salt-induced photoinhibition mainly by modulating the endogenous AsA level and redox state in the chloroplast to promote chlorophyll synthesis and alleviate the damage of oxidative stress to photosynthetic apparatus. AsA can also raise the efficiency of light utilization as well as excitation energy dissipation within the photosystem II (PSII) antennae, thus increasing the stability of PSII and promoting the movement of electrons among PS1 and PSII in tomato seedling leaves subjected to salt stress.

8.
J Zhejiang Univ Sci B ; 12(2): 126-34, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21265044

RESUMO

Cucumber and rice plants with varying ammonium (NH(4)(+)) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO(3)(-))-grown plants, cucumber plants grown under NH(4)(+)-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO(2)) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O(2)-independent alternative electron flux, and increased O(2)-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH(4)(+)-grown plants had a higher O(2)-independent alternative electron flux than NO(3)(-)-grown plants. NO(3)(-) reduction activity was rarely detected in leaves of NH(4)(+)-grown cucumber plants, but was high in NH(4)(+)-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO(3)(-) assimilation, an effect more significant in NO(3)(-)-grown plants than in NH(4)(+)-grown plants. Meanwhile, NH(4)(+)-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO(3)(-) reduction, regardless of the N form supplied, while NH(4)(+)-sensitive plants had a high water-water cycle activity when NH(4)(+) was supplied as the sole N source.


Assuntos
Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Clorofila A , Transporte de Elétrons , Fluorescência , NADP/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Compostos de Amônio Quaternário/metabolismo
9.
Plant Cell Environ ; 34(2): 347-58, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21054437

RESUMO

Brassinosteroids (BRs) can induce plant tolerance to a variety of abiotic stresses by triggering the generation of H(2) O(2) as a signalling molecule in cucumber leaves. Whether nitric oxide (NO) also plays a signalling role and, if so, what is the relationship between NO and H(2) O(2) in BR-induced stress tolerance are unknown. Involvement of NO and H(2) O(2) in BR-induced tolerance was examined. NO accumulation and defence related gene transcripts were monitored by confocal laser-scanning microscopy and qRT-PCR, respectively. NO content was elevated after treatment with 24-epibrassinolide (EBR) and reduced with the inhibition of BR biosynthesis. EBR-induced NO production was blocked by pre-treatment with inhibitor of NADPH oxidase and a reactive oxygen species scavenger. On the other hand, EBR-induced H(2) O(2) generation was not sensitive to NO scavenger or inhibitor of NO production. Scavenging or inhibition of NO production inhibited EBR-induced tolerance to photo-oxidative and cold stress and partly blocked EBR-induced expression and activities of several antioxidant enzymes. Pre-treatment of the exogenous NO precursor, on the other hand, led to both increased stress tolerance and increased expression of antioxidant enzymes. These results strongly suggest that NO plays an important role in H(2) O(2) -dependent induction of plant stress tolerance by BR.


Assuntos
Brassinosteroides/farmacologia , Cucumis sativus/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Adaptação Fisiológica , Cucumis sativus/enzimologia , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/análise , Microscopia Confocal , Óxido Nítrico/análise , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética , Plântula/metabolismo , Transdução de Sinais , Esteroides Heterocíclicos/farmacologia , Triazóis/farmacologia
10.
J Photochem Photobiol B ; 96(1): 30-7, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19410482

RESUMO

Light quality is thought to affect many plant physiological processes during growth and development, particularly photosynthesis. We examined how light quality influences plant photosynthesis by analyzing changes in photosynthetic parameters and expression levels of some photosynthesis related genes of cucumber (Cucumis sativus L. cv. Jinyou No. 1) plants. The plants were grown under different light qualities: purple (P), blue (B), green (G), yellow (Y), red (R) and white light (W) of the same photosynthetic photon flux density (PFD) about 350 micromol m(-2)s(-1) for 5 days. The results show that all plants grown under monochromatic light had reduced growth, CO(2) assimilation rate (Pn) and quantum yield of PSII electron transport (Phi(PSII)) as compared with plants grown under W, and these reductions were more significant in the plants under G, Y and R. The decrease in Phi(PSII) is mostly due to the reduction in photochemical quenching (qP). Interestingly, P- and B-grown plants had higher stomatal conductance (Gs), total and initial Rubisco activities and higher transcriptional levels of 10 genes which encode key enzymes in the Calvin cycle together with higher total soluble sugars, sucrose and starch contents as compared with W-grown plants, whereas in G-, Y-, and R-grown plants these parameters declined. Therefore, the reduction in Pn under P and B is likely the result of inactivation of photosystems, whilst under Y, G and R it is caused by, in addition to photosystem inactivation, the closure of stomata and the transcriptional down-regulation of genes for the Calvin cycle enzymes such as rbc L and rca. In conclusion, light quality alters plant photosynthesis by the effects on the activity of photosynthetic apparatus in leaves and the effects on the expression and/or activity of the Calvin cycle enzymes.


Assuntos
Dióxido de Carbono/metabolismo , Clorofila/química , Cucumis sativus/genética , Corantes Fluorescentes/química , Luz , Fotossíntese/genética , Metabolismo dos Carboidratos , Cucumis sativus/crescimento & desenvolvimento , Regulação para Baixo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA