RESUMO
Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms. In vitro, human renal proximal tubular HK-2 cells exposed to high glucose/high fat (HG/HF) presented significant downregulation of TERT and AMPK dephosphorylation. This led to decreased ATP production, altered NAD+/NADH ratios, reduced mitochondrial complex activities, increased mitochondrial dysfunction, lipid accumulation, and reactive oxygen species (ROS) production. Knockdown of TERT (si-TERT) further exacerbated mitochondrial dysfunction, decreased mitochondrial membrane potential, and lowered levels of cellular oxidative phosphorylation and glycolysis, as determined via a Seahorse X24 flux analyzer. Conversely, mitochondrial dysfunction was significantly alleviated after pcDNA-TERT plasmid transfection and adeno-associated virus (AAV) 9-TERT gene therapy in vivo. Notably, treatment with an AMPK inhibitor, activator, and si-PGC-1a (peroxisome proliferator-activated receptor γ coactivator-1α), resulted in mitochondrial dysfunction and decreased expression of genes related to energy metabolism and mitochondrial biogenesis. Our findings reveal that TERT protects mitochondrial function and homeostasis by partially activating the AMPK/PGC-1a signaling pathway. These results establish a crucial foundation for understanding TERT's critical role inmitochondrial regulation and its protective effect on DKD.
Assuntos
Proteínas Quinases Ativadas por AMP , Nefropatias Diabéticas , Metabolismo Energético , Homeostase , Mitocôndrias , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Telomerase , Telomerase/metabolismo , Telomerase/genética , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Linhagem Celular , Espécies Reativas de Oxigênio/metabolismo , Masculino , Camundongos , Glucose/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BLRESUMO
Protein disulfide isomerases (PDIs) and PDI-like proteins catalyze the oxidation and reduction in protein disulfide bonds, inhibit aggregation of misfolded proteins, and participate in isomerization and abiotic stress responses. The wild type 'duli' pear (Pyrus betulaefolia) is an important rootstock commonly used for commercial pear tree grafting in northern China. In this study, we identified 24 PDI genes, named PbPDIs, from the genome of 'duli' pear. With 12 homologous gene pairs, these 24 PbPDIs distribute on 12 of its 17 chromosomes. Phylogenetic analysis placed the 24 PbPDIs into four clades and eleven groups. Collinearity analysis of the PDIs between P. betulaefolia, Arabidopsis thaliana, and Oryza sativa revealed that the PbPDIs of 'duli' pear show a strong collinear relationship with those from Arabidopsis, a dicot; but a weak collinear relationship with those from rice, a monocot. Quantitative RT-PCR analysis showed that most of the PbPDIs were upregulated by salt stress. Identification and expression analysis of 'duli' pear PbPDIs under salt stress conditions could provide useful information for further research in order to generate salt-resistant rootstock for pear grafting in the future.
Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Isomerases de Dissulfetos de Proteínas , Pyrus , Estresse Salino , Pyrus/genética , Pyrus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismoRESUMO
Heat stress (HS) is a stressor that negatively affect female reproduction. Specially, oocytes are very sensitive to HS. It has been demonstrated that some active compounds can protect oocyte from HS. We previously found that Mogroside V (MV), extracted from Siraitia grosvenorii (Luo Han Guo), can protect oocyte from many kinds of stresses. However, how MV alleviates HS-induced disruption of oocyte maturation remains unknown. In this study, we treated the HS-induced porcine oocytes with MV to examine their maturation and quality. Our findings demonstrate that MV can effectively alleviate HS-induced porcine oocyte abnormal cumulus cell expansion, decrease of first polar body extrusion rate, spindle assembly and chromosome separation abnormalities, indicating MV attenuates oocyte mature defects. We further observed that MV can effectively alleviate HS-induced cortical granule distribution abnormality and decrease of blastocyst formation rate after parthenogenesis activation. In addition, MV treatment reversed mitochondrial dysfunction and lipid droplet content decrease, reduced reactive oxygen species levels, early apoptosis and DNA damage in porcine oocytes after HS. Collectively, this study suggests that MV can effectively protect porcine oocytes from HS.
Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos , Triterpenos , Suínos , Feminino , Animais , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oogênese , Espécies Reativas de Oxigênio/farmacologia , Resposta ao Choque TérmicoRESUMO
The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .
RESUMO
Plastic waste released into the environments breaks down into microplastics due to weathering, ultraviolet (UV) radiation, mechanical abrasion, and animal grazing. However, little is known about the plastic fragmentation mediated by microbial degradation. Marine plastic-degrading bacteria may have a double-edged effect in removing plastics. In this study, two ubiquitous marine bacteria, Alcanivorax xenomutans and Halomonas titanicae, were confirmed to degrade polystyrene (PS) and lead to microplastic and nanoplastic generation. Biodegradation occurred during bacterial growth with PS as the sole energy source, and the formation of carboxyl and carboxylic acid groups, decreased heat resistance, generation of PS metabolic intermediates in cultures, and plastic weight loss were observed. The generation of microplastics was dynamic alongside PS biodegradation. The size of the released microplastics gradually changed from microsized plastics on the first day (1344 nm and 1480 nm, respectively) to nanoplastics on the 30th day (614 nm and 496 nm, respectively) by the two tested strains. The peak release from PS films reached 6.29 × 106 particles/L and 7.64 × 106 particles/L from degradation by A. xenomutans (Day 10) and H. titanicae (Day 5), respectively. Quantification revealed that 1.3% and 1.9% of PS was retained in the form of micro- and nanoplastics, while 4.5% and 1.9% were mineralized by A. xenomutans and H. titanicae at the end of incubation, respectively. This highlights the negative effects of microbial degradation, which results in the continuous release of numerous microplastics, especially nanoplastics, as a notable secondary pollution into marine ecosystems. Their fates in the vast aquatic system and their impact on marine lives are noted for further study.
Assuntos
Poliestirenos , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos , Ecossistema , Poluentes Químicos da Água/análise , Biodegradação AmbientalRESUMO
In this study, dry-cured Spanish mackerel (Scomberomorus niphonius, DCSM) was prepared via three different methods (hot-air drying, cold-air drying, and sun drying). The content of 4-hydroxy-2-hexenal (HHE) and 4-hydroxy-2-nonenal (HNE) derived from lipid oxidation in whole processes was investigated by HPLC-MS/MS. The changes in fatty acid composition were detected by GC-MS, and the degree of lipid oxidation was evaluated by the levels of acid values (AV), peroxide values (POV), and thiobarbituric acid-reactive substances (TBARS). The results showed that the drying process significantly accelerated lipid oxidation in DCSM. The contents of HHE and HNE were significantly increased after processing. The content of HHE was higher by 18.44-, 13.45-, and 16.32-folds compared with that of HNE after three different processes, respectively. The HHE and HNE contents fluctuated upward during the hot-air and cold-air drying process. However, the contents of HHE and HNE increased time-dependent during the sun drying process, with the highest values of 86.33 ± 10.54 and 5.29 ± 0.54 mg/kg fish among the three different processes. Besides, there was a significant positive correlation between HHE contents and n-3 fatty acids content in hot-air drying and sun drying processes (Pearson's r = .991/.996), and HNE occurrence was closely related to n-6 fatty acid content in sun drying process (Pearson's r = .989). Regression analysis indicated that the content of HHE and TOTOXTBA values in DCSM showed good linear relationships (R 2 value = .907), which suggested that the content of HHE could be used to estimate the oxidative deterioration of dry-cured fish products.
RESUMO
Lipopolysaccharide (LPS), a significant virulence factor of gram-negative bacteria, adversely affects female reproduction, especially the maturation and early embryonic development of oocytes, through inducing of inflammatory and oxidative stress-associated toxic responses. Resveratrol (Res), a potent antioxidant, exhibits many beneficial effects on the maturation and developmental competence of oocytes. However, it is unclear whether Res can restore LPS-induced defects in the maturation of oocytes during meiosis. In this study, we used porcine oocytes to explore the protective effects of Res and its underlying mechanism against the toxic impacts of LPS exposure on meiotic maturation and developmental competence of oocytes during meiosis. The oocytes were randomly assigned to a control, LPS-exposed or Res-supplemented group. Nuclear and cytoplasmic maturation was assessed after 26 h (MI) or 44 h (MII) of in vitro maturation (IVM). Our results showed that 10 µM Res significantly improved the rates of oocyte maturation and blastocyst formation after exposure to 15 µg/mL LPS. In addition, Res preserved the normal spindle/chromosome structure and maintained acetylated tubulin levels, actin polymerization and cortical granules (CGs) distribution. Additionally, Res protected mitochondrial content and function, scavenges reactive oxygen species (ROS), and reduced DNA damage and apoptosis in LPS-exposed oocytes. Furthermore, inhibition of SIRT1 by its specific inhibitor EX527 suppressed the recovery of ROS levels, mitochondrial content, and spindle/chromosome structure by Res supplementation. In summary, this study shows that Res can alleviate the impacts of LPS-induced toxicity on meiosis in porcine oocytes by upregulating SIRT1, which ameliorates oxidative stress and increasing mitochondrial content.
Assuntos
Lipopolissacarídeos , Sirtuína 1 , Gravidez , Suínos , Feminino , Animais , Lipopolissacarídeos/toxicidade , Resveratrol/farmacologia , Espécies Reativas de Oxigênio , Oócitos , Técnicas de Maturação in Vitro de OócitosRESUMO
Acute respiratory distress syndrome (ARDS) has been a life threat for patients in ICUs. Vast efforts have been devoted, while no medication has proved viable, which may be ascribed to inadequate drug delivery to damaged tissues and insufficient control of lung inflammation. Given the anti-inflammatory role of M2-type macrophages, M2 macrophage-derived nanovesicles and lung-targeting liposomes are cofused to fabricate hybrid liposomes-nanovesicles (LNVs). Benefiting from the incorporated lung-homing moiety, LNVs demonstrate high pulmonary accumulation with a lung/liver ratio of 14.9, which is approximately 53.3-fold of free nanovesicles. Thus, M2 macrophage-derived nanovesicles can be delivered to lung tissues for executing immunoregulatory functions. LNVs display phagocytosis by the infiltrated neutrophils and macrophages, exhibiting sustained release of preloaded IKK-2 inhibitor (TPCA-1). The integrated nanosystems demonstrate multidimensional suppression of the overwhelming inflammation, such as decreasing infiltration of inflammatory cells, achieving restraint on cytokine storms and alleviating oxidative stress. Therefore, the improved therapeutic outcome in ARDS mice is obtained. Altogether, the hybrid nanoplatform provides a versatile drug delivery paradigm for integrating biological nanovesicles and therapeutic molecules by cofusion of nanovesicles with liposomes, improving lung biodistribution and accomplishing a boosted anti-inflammatory response for ARDS therapy.
Assuntos
Síndrome da Liberação de Citocina , Síndrome do Desconforto Respiratório , Animais , Anti-Inflamatórios/farmacologia , Biomimética , Preparações de Ação Retardada , Lipossomos , Pulmão , Camundongos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Distribuição TecidualRESUMO
In this study, CoS/MnCo2O4-MnO2 (CMM) nanocomposites were synthesized by hydrothermal and then electrochemical deposition. Their electrochemical properties were systematically investigated for supercapacitors and energy-saving H2 production. As an electrode material for supercapacitor, CMM demonstrates a specific capacitance of 2320F g-1 at 1 A/g, and maintains a specific capacitance of 1216F g-1 at 10 A/g. It also shows 72.8 % capacitance retention after 8000 cycles. The aqueous asymmetric supercapacitor exhibited high energy storage capacity (887.86F g-1 specific capacitance at a current density of 1 A/g), good rate performance and cycling stability. Besides, CMM shows outstanding urea oxidation reaction(UOR) and glycol oxidation reaction (MOR) performances for H2 production. Compared to oxygen evolution reaction (OER) (1.635 V) at 20 mA cm-2, the potentials were reduced by 213 mV for UOR and 233 mV for MOR, respectively. Therefore, this study shows the promising practical applications of CMM nanocomposites for energy storage and energy-saving H2 production.
RESUMO
Siraitia grosvenorii is a kind of medicinal food plant. The mogroside-rich extract (MGE) of its fruits can effectively ameliorate obesity, but the underlying mechanisms remain underexplored. In this study, we aimed to determine whether MGE can ameliorate obesity by protecting against the divergences of gut microbiota. Mice were challenged with a high-fat diet (HFD) and treated with MGE by oral gavage. Then, the characteristics of the gut microbiota were determined by 16S rDNA analysis. Our findings showed that MGE could significantly reduce body weight gain and fat tissue weight of the mice fed with HFD. Moreover, MGE markedly attenuated fatty liver, and improved glucose tolerance and insulin sensitivity. We further found that the gut microbiota structures were disturbed by HFD feeding. In particular, the abundance of Firmicutes was increased and the abundance of Bacteroidetes was decreased, resulting in an increased proportion of Firmicutes to Bacteroidetes (F/B), which contributes to obesity. Interestingly, the abnormal proportion of F/B of HFD feeding mice was restored to the level of control mice by MGE treatment. Additionally, the abundances of obesogenic microbiota, such as Ruminiclostridium and Oscillibacter were also decreased after MGE treatment. In summary, our findings demonstrate that MGE can modulate gut microbiota in obese mice and shed new light on how it alleviates obesity.
RESUMO
Cf/C-SiC composites have become the preferred material for high-temperature load-bearing applications because of their low density, high strength, and excellent thermal-physical properties. Due to the composite's poor sintering performance, the sintering temperature and pressure required for the preparation of Cf/C-SiC by traditional methods are also relatively high, which limits its engineering application. Herein, based on the precursor-derived ceramic route and C/C composites material preparation process, a binary binder (coal pitch and polysilylacetylene) is developed, which combines a carbon source, SiC precursor, and semi-ceramic SiC filler organically. Then, the SiC phase was successfully introduced into C/C composites by the slurry impregnation-hot pressing sintering method. The prepared Cf/C-SiC composites showed good mechanical properties, with a density of 1.53 g/cm3 and a bending strength of 339 ± 21 MPa. Moreover, the effects of the binary binder on the microstructure, density, and mechanical properties of Cf/C-SiC composites were investigated. This work provides a novel and effective approach to fabricating Cf/C-SiC composites with low density and high strength.
RESUMO
Mogroside-rich extract (MGE), the main bioactive component of dried Siraitia grosvenorii fruit, has long been used as a natural sweetener and traditional Chinese medicine. This extract possesses various types of pharmacological activities, such as anti-inflammatory, antioxidative, hypoglycemic and hypolipemic activities. Moreover, we recently revealed that MGE has beneficial effects on female reproduction. Increasing maternal age leads to a rapid reduction in female fertility; in particular, it dramatically decreases ovarian function. Nevertheless, whether MGE can alleviate ovarian aging and the underlying mechanisms have not yet been explored. In this study, mice were treated with MGE by supplementation in drinking water from 10 to 44 weeks of age. Then, ovarian function and molecular changes were determined. Our findings showed that MGE treatment protected aged mice from estrous cycle disorder. Moreover, MGE treatment significantly increased the ovarian reserves of aged mice. RNA-seq data showed that MGE upregulated the expression of genes related to gonad development, follicular development, and hormone secretion in ovarian tissue. Additionally, inflammatory stress was induced, as indicated by upregulation of inflammation-related gene expression and elevated TNF-α levels in the ovarian tissues of aged mice; however, MGE treatment attenuated inflammatory stress. In summary, our findings demonstrate that MGE can ameliorate age-related estrous cycle disorder and ovarian reserve decline in mice, possibly by alleviating ovarian inflammatory stress.
Assuntos
Anti-Inflamatórios , Cucurbitaceae/química , Reserva Ovariana/efeitos dos fármacos , Extratos Vegetais , Triterpenos , Envelhecimento/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Feminino , Inflamação/metabolismo , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Triterpenos/química , Triterpenos/farmacologiaRESUMO
Acute respiratory distress syndrome (ARDS) is characterized by the severe inflammation and destruction of the lung air-blood barrier, leading to irreversible and substantial respiratory function damage. Patients with coronavirus disease 2019 (COVID-19) have been encountered with a high risk of ARDS, underscoring the urgency for exploiting effective therapy. However, proper medications for ARDS are still lacking due to poor pharmacokinetics, non-specific side effects, inability to surmount pulmonary barrier, and inadequate management of heterogeneity. The increased lung permeability in the pathological environment of ARDS may contribute to nanoparticle-mediated passive targeting delivery. Nanomedicine has demonstrated unique advantages in solving the dilemma of ARDS drug therapy, which can address the shortcomings and limitations of traditional anti-inflammatory or antioxidant drug treatment. Through passive, active, or physicochemical targeting, nanocarriers can interact with lung epithelium/endothelium and inflammatory cells to reverse abnormal changes and restore homeostasis of the pulmonary environment, thereby showing good therapeutic activity and reduced toxicity. This article reviews the latest applications of nanomedicine in pre-clinical ARDS therapy, highlights the strategies for targeted treatment of lung inflammation, presents the innovative drug delivery systems, and provides inspiration for strengthening the therapeutic effect of nanomedicine-based treatment.
RESUMO
Accumulating evidence has demonstrated that lipopolysaccharide (LPS) compromises female reproduction, especially oocyte maturation and competence. However, methods to protect oocyte quality from LPS-induced deterioration remain largely unexplored. We previously found that mogroside V (MV) can promote oocyte maturation and embryonic development. However, whether MV can alleviate the adverse effects of LPS exposure on oocyte maturation is unclear. Thus, in this study, we used porcine oocytes as a model to explore the effects of MV administration on LPS-induced oocyte meiotic defects. Our findings show that supplementation with MV protected oocytes from the LPS-mediated reduction in the meiotic maturation rate and the subsequent blastocyst formation rate. In addition, MV alleviated the abnormalities in spindle formation and chromosome alignment, decrease in α-tubulin acetylation levels, the disruption of actin polymerization, and the reductions in mitochondrial contents and lipid droplet contents caused by LPS exposure. Meanwhile, LPS reduced m6A levels in oocytes, but MV restored these epigenetic modifications. Furthermore, MV reduced reactive oxygen species (ROS) levels and early apoptosis in oocytes exposed to LPS. In summary, our study demonstrates that MV can protect oocytes from LPS-induced meiotic defects in part by reducing oxidative stress and maintaining m6A levels.
RESUMO
Artificial light at night (ALAN) exposes us to prolonged illumination, that adversely affects female reproduction. However, it remains to be clarified how prolonged light exposure affects oocyte meiotic maturation and quality. To this end, we exposed female mice to a constant light (CL) of 250 lux for different durations. Our findings showed that CL exposure for 7 weeks reduced the oocyte maturation rate. Meanwhile, CL exposure caused greater abnormalities in spindle assembly and chromosome alignment and a higher rate of oocyte aneuploidy than the regular light dark cycle. CL exposure also induced oxidative stress and caused mitochondrial dysfunction, which resulted in oocyte apoptosis and autophagy. Notably, our results showed that CL exposure reduced the levels of α-tubulin acetylation, DNA methylation at 5 mC, RNA methylation at m6A and histone methylation at H3K4me2 but increased the levels of histone methylation at H3K27me2 in oocytes. In summary, our findings demonstrate that constant bright light exposure causes oocyte meiotic defects and reduces cytoplasmic quality. These results extend the current understanding of ALAN-mediated defects in female reproduction.
Assuntos
Apoptose , Oócitos , Animais , Autofagia , Ciclo Celular , Feminino , Camundongos , Estresse OxidativoRESUMO
The increasing demand for energy and environmental protection has stimulated intensive interest in fundamental research and practical applications. Nickel dichalcogenides (Ni3S2, NiS, Ni3Se2, NiSe, etc.) are promising materials for high-performance electrochemical energy storage and conversion applications. Herein, 3D Ni3S2 nanorod arrays are fabricated on Ni foam by a facile solvothermal route. The optimized Ni3S2/Ni foam electrode displays an areal capacity of 1602 µA h cm-2 at 5 mA cm-2, excellent rate capability and cycling stability. Besides, 3D Ni3S2 nanorod arrays as electrode materials exhibit outstanding performances for the overall water splitting reaction. In particular, the 3D Ni3S2 nanorod array electrode is shown to be a high-performance water electrolyzer with a cell voltage of 1.63 V at a current density of 10 mA cm-2 for overall water splitting. Therefore, the results demonstrate a promising multifunctional 3D electrode material for electrochemical energy storage and conversion applications.
RESUMO
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) in particulate matter that has a diameter of ≤2.5 µm (PM2.5). Studies have demonstrated that BaP exposure causes oocyte meiotic arrest in mice. However, whether BaP exposure also affects oocyte maturation in offspring remains unclear. To test this, female mice were administered BaP before pregnancy to generate BaP-exposed offspring. Our findings showed that BaP exposure reduced the in vitro maturation and increased the abnormalities of meiotic apparatus in offspring oocytes. In addition, BaP exposure reduced the mitochondrial content and intracellular ATP generation, induced early apoptosis, increased reactive oxidative species accumulation and the genomic DNA 5-methylcytosine (5mc) level in offspring oocytes. Along with the abovementioned defective parameters, maternal BaP exposure further compromised the embryo developmental competence of offspring oocytes. In summary, our study demonstrated that maternal BaP exposure compromised offspring oocyte maturation and quality.