Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499656

RESUMO

Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.

2.
bioRxiv ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37961213

RESUMO

Neuronal hyperexcitability is a hallmark of seizures. It has been recently shown in rodent models of seizures that microglia, the brain's resident immune cells, can respond to and modulate neuronal excitability. However, how human microglia interacts with human neurons to regulate hyperexcitability mediated by epilepsy-causing genetic mutation found in human patients remains unknown. The SCN2A genetic locus is responsible for encoding the voltage-gated sodium channel Nav1.2, recognized as one of the leading contributors to monogenic epilepsies. Previously, we demonstrated that the recurring Nav1.2-L1342P mutation identified in patients with epilepsy leads to hyperexcitability in a hiPSC-derived cortical neuron model from a male donor. While microglia play an important role in the brain, these cells originate from a different lineage (yolk sac) and thus are not naturally present in hiPSCs-derived neuronal culture. To study how microglia respond to diseased neurons and influence neuronal excitability, we established a co-culture model comprising hiPSC-derived neurons and microglia. We found that microglia display altered morphology with increased branch length and enhanced calcium signal when co-cultured with neurons carrying the Nav1.2-L1342P mutation. Moreover, the presence of microglia significantly lowers the action potential firing of neurons carrying the mutation. Interestingly, we further demonstrated that the current density of sodium channels in neurons carrying the epilepsy-associated mutation was reduced in the presence of microglia. Taken together, our work reveals a critical role of human iPSCs-derived microglia in sensing and dampening hyperexcitability mediated by an epilepsy-causing mutation present in human neurons, highlighting the importance of neuron-microglia interactions in human pathophysiology.

3.
Res Sq ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37841865

RESUMO

Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus to understand ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglial-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.

4.
J Cell Physiol ; 236(12): 8082-8098, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34077559

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused mostly by mutations in the MECP2 gene. RTT patients show periodical hypoventilation attacks. The breathing disorder contributing to the high incidence of sudden death is thought to be due to depressed central inspiratory (I) activity via unknown cellular processes. Demonstration of such processes may lead to targets for pharmacological control of the RTT-type hypoventilation. We performed in vivo recordings from medullary respiratory neurons on the RTT rat model. To our surprise, both I and expiratory (E) neurons in the ventral respiratory column (VRC) increased their firing activity in Mecp2-null rats with severe hypoventilation. These I neurons including E-I phase-spanning and other I neurons remained active during apneas. Consistent with enhanced central I drive, ectopic phrenic discharges during expiration as well as apnea were observed in the Mecp2-null rats. Considering the increased I neuronal firing and ectopic phrenic activity, the RTT-type hypoventilation does not seem to be caused by depression in central I activity, neither reduced medullary I premotor output. This as well as excessive E neuronal firing as shown in our previous studies suggests inadequate synaptic inhibition for phase transition. We found that the abnormal respiratory neuronal firing, ectopic phrenic discharge as well as RTT-type hypoventilation all can be corrected by enhancing GABAergic inhibition. More strikingly, Mecp2-null rats reaching humane endpoints with severe hypoventilation can be rescued by GABAergic augmentation. Thus, defective GABAergic inhibition among respiratory neurons is likely to play a role in the RTT-type hypoventilation, which can be effectively controlled with pharmacological agents.


Assuntos
Hipoventilação/patologia , Bulbo/metabolismo , Neurônios/metabolismo , Síndrome de Rett/metabolismo , Animais , Modelos Animais de Doenças , Hipoventilação/metabolismo , Bulbo/patologia , Neurônios/efeitos dos fármacos , Ratos Nus , Respiração/efeitos dos fármacos , Respiração/genética , Síndrome de Rett/tratamento farmacológico
5.
J Cell Physiol ; 236(5): 3615-3628, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33169374

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disease caused mostly by mutations in the MECP2 gene. People with RTT show breathing dysfunction attributable to the high rate of sudden death. Previous studies have shown that insufficient GABA synaptic inhibition contributes to the breathing abnormalities in mouse models of RTT, while it remains elusive how the glycine system is affected. We found that optogenetic stimulation of GAD-expressing neurons in mice produced GABAergic and glycinergic postsynaptic inhibitions of neurons in the hypoglossal nucleus (XII) and the dorsal motor nucleus of vagus (DMNV). By sequential applications of bicuculline and strychnine, such inhibition appeared approximately 44% GABAA ergic and 52% glycinergic in XII neurons, and approximately 49% GABAA ergic and 46% glycinergic in DMNV neurons. Miniature inhibitory postsynaptic potentials (mIPSCs) in these neurons were approximately 47% GABAA ergic and 49% glycinergic in XII neurons, and approximately 48% versus 50% in DMNV neurons, respectively. Consistent with the data, our single-cell polymerase chain reaction studies indicated that transcripts of GABAA receptor γ2 subunit (GABAA Rγ2) and glycine receptor ß subunit (GlyRß) were simultaneously expressed in these cells. In MeCP2R168X mice, proportions of GABAA ergic and glycinergic mIPSCs became approximately 28% versus 69% in XII neurons, and approximately 31% versus 66% in DMNV cells. In comparison with control mice, the GABAA ergic and glycinergic mIPSCs decreased significantly in the XII and DMNV neurons from the MeCP2R168X mice, so did the transcripts of GABAA Rγ2 and GlyRß. These results suggest that XII and DMNV neurons adopt dual GABAA ergic and glycinergic synaptic inhibitions, and with Mecp2 disruption these neurons rely more on glycinergic synaptic inhibition.


Assuntos
Tronco Encefálico/fisiopatologia , Glicina/farmacologia , Inibição Neural/fisiologia , Neurônios/patologia , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia , Sinapses/fisiologia , Ácido gama-Aminobutírico/farmacologia , Animais , Bicuculina/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Glutamato Descarboxilase/metabolismo , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Optogenética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de Glicina/antagonistas & inibidores , Receptores de Glicina/metabolismo , Sinapses/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Nervo Vago/patologia
6.
Neuropharmacology ; 176: 108214, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622786

RESUMO

Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mainly by mutations in the MECP2 gene. One of the major RTT features is breathing dysfunction characterized by periodic hypo- and hyperventilation. The breathing disorders are associated with increased brainstem neuronal excitability, which can be alleviated with GABA agonists. Since neuronal hypoexcitability occurs in the forebrain of RTT models, it is necessary to find pharmacological agents with a relative preference to brainstem neurons. Here we show evidence for the improvement of breathing disorders of Mecp2-disrupted mice with the brainstem-acting drug cloperastine (CPS) and its likely neuronal targets. CPS is an over-the-counter cough medicine that has an inhibitory effect on brainstem neuronal networks. In Mecp2-disrupted mice, CPS (30 mg/kg, i.p.) decreased the occurrence of apneas/h and breath frequency variation. GIRK currents expressed in HEK cells were inhibited by CPS with IC50 1 µM. Whole-cell patch clamp recordings in locus coeruleus (LC) and dorsal tegmental nucleus (DTN) neurons revealed an overall inhibitory effect of CPS (10 µM) on neuronal firing activity. Such an effect was reversed by the GABAA receptor antagonist bicuculline (20 µM). Voltage clamp studies showed that CPS increased GABAergic sIPSCs in LC cells, which was blocked by the GABAB receptor antagonist phaclofen. Functional GABAergic connections of DTN neurons with LC cells were shown. These results suggest that CPS improves breathing dysfunction in Mecp2-null mice by blocking GIRK channels in synaptic terminals and enhancing GABA release.


Assuntos
Antitussígenos/uso terapêutico , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Piperidinas/uso terapêutico , Respiração/efeitos dos fármacos , Síndrome de Rett/tratamento farmacológico , Ácido gama-Aminobutírico/metabolismo , Animais , Antitussígenos/farmacologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Relação Dose-Resposta a Droga , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Agonistas GABAérgicos/farmacologia , Agonistas GABAérgicos/uso terapêutico , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia
7.
Vascul Pharmacol ; 128-129: 106666, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32151743

RESUMO

The vascular ATP-sensitive K+ (KATP) channel composed of Kir6.1 and SUR2B subunits regulates cellular activity by coupling intermediary metabolism to membrane excitability. Our previous studies have shown that both Kir6.1 and SUB2B are post-transcriptionally downregulated by methylglyoxal (MGO) which is a reactive carbonyl specie and can cause disruption of vascular tone regulation under diabetic conditions. We have shown that the SUB2B downregulation is mediated by the microRNA (miR) miR-9a, while the mechanism underlying Kir6.1 inhibition is still unclear. Studying the microRNA databases, we found that miR-223 has sequence similarities to the 3' untranslated sequence (3'UTR) of Kir6.1 mRNA suggesting their potential interactions. Therefore, we explored the role of miR-233 in KATP channel regulation by up/down-regulation of miR-223 in smooth muscle cells (SMCs) and mesenteric arterials. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis showed augmentation of miR-223 expression in the cultured SMCs after 300 µM MGO exposure by 5-6 folds. miR-223 overexpression down-regulated Kir6.1 mRNA levels by ~2.6 times while miR-223 knockdown diminished the effect of 300 µM MGO by ~50% in the SMCs. Luciferase assay and mutagenesis studies showed that the effect of miR-223 was abolished when the potential interaction site in the 3' UTR was mutated. Studies with Western blot, patch clamp, and perfused mesenteric arterial rings showed that transfection of miR-223 downregulated KATP protein expression, inhibited KATP channel activity and enhanced vasoconstriction. These results therefore suggest that miR-223 is induced by MGO exposure, which subsequently downregulates the Kir6.1 mRNA, suppresses KATP channel function, and impairs functional regulation of vascular tones. BACKGROUND: Methylglyoxal causes transcriptional inhibition of the vascular KATP channel. RESULTS: Exogenous miR-223 down-regulated Kir6.1. miR-223 knockdown alleviated the effect of MGO. CONCLUSION: Vascular KATP channel is important for miR-223 targeting. SIGNIFICANCE: Regulation of the miR-223 level may be a novel strategy for clinical treatment of diabetes.


Assuntos
Canais KATP/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Aldeído Pirúvico/toxicidade , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Linhagem Celular , Regulação para Baixo , Canais KATP/genética , Masculino , Potenciais da Membrana , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Artérias Mesentéricas/fisiopatologia , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , RNA Mensageiro/genética , Ratos Sprague-Dawley , Vasoconstrição/efeitos dos fármacos
8.
Neuroscience ; 397: 107-115, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30458221

RESUMO

People with Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in the MECP2 gene, have breathing abnormalities manifested as periodical hypoventilation with compensatory hyperventilation, which are attributable to a high incidence of sudden death. Similar breathing abnormalities have been found in animal models with Mecp2 disruptions. Although RTT-type hypoventilation is believed to be due to depressed central inspiratory activity, whether this is true remains unknown. Here we show evidence for reshaping in firing activity and patterns of medullary respiratory neurons in RTT-type hypoventilation without evident depression in inspiratory neuronal activity. Experiments were performed in decerebrate rats in vivo. In Mecp2-null rats, abnormalities in breathing patterns were apparent in both decerebrate rats and awake animals, suggesting that RTT-type breathing abnormalities take place in the brainstem without forebrain input. In comparison to their wild-type counterparts, both inspiratory and expiratory neurons in Mecp2-null rats extended their firing duration, and fired more action potentials during each burst. No changes in inspiratory or expiratory neuronal distributions were found. Most inspiratory neurons started firing in the middle of expiration and changed their firing pattern to a phase-spanning type. The proportion of post-inspiratory neurons was reduced in the Mecp2-null rats. With the increased firing activity of both inspiratory and expiratory neurons in null rats, phrenic discharges shifted to a slow and deep breathing pattern. Thus, the RTT-type hypoventilation appears to result from reshaping of firing activity of both inspiratory and expiratory neurons without evident depression in central inspiratory activity.


Assuntos
Potenciais de Ação/fisiologia , Bulbo/metabolismo , Proteína 2 de Ligação a Metil-CpG/deficiência , Neurônios/metabolismo , Respiração , Síndrome de Rett/metabolismo , Animais , Estado de Descerebração , Modelos Animais de Doenças , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Nervo Frênico/metabolismo , Ratos Sprague-Dawley , Ratos Transgênicos , Vigília
9.
Physiol Rep ; 5(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28108647

RESUMO

Rett syndrome (RTT) is mostly caused by mutations of the X-linked MECP2 gene. Although the causal neuronal mechanisms are still unclear, accumulating experimental evidence obtained from Mecp2-/Y mice suggests that imbalanced excitation/inhibition in central neurons plays a major role. Several approaches may help to rebalance the excitation/inhibition, including agonists of GABAA receptors (GABAAR). Indeed, our previous studies have shown that early-life exposure of Mecp2-null mice to the extrasynaptic GABAAR agonist THIP alleviates several RTT-like symptoms including breathing disorders, motor dysfunction, social behaviors, and lifespan. However, how the chronic THIP affects the Mecp2-/Y mice at the cellular level remains elusive. Here, we show that the THIP exposure in early lives markedly alleviated hyperexcitability of two types of brainstem neurons in Mecp2-/Y mice. In neurons of the locus coeruleus (LC), known to be involved in breathing regulation, the hyperexcitability showed clear age-dependence, which was associated with age-dependent deterioration of the RTT-like breathing irregularities. Both the neuronal hyperexcitability and the breathing disorders were relieved with early THIP treatment. In neurons of the mesencephalic trigeminal nucleus (Me5), both the neuronal hyperexcitability and the changes in intrinsic membrane properties were alleviated with the THIP treatment in Mecp2-null mice. The effects of THIP on both LC and Me5 neuronal excitability remained 1 week after withdrawal. Persistent alleviation of breathing abnormalities in Mecp2-/Y mice was also observed a week after THIP withdrawal. These results suggest that early-life exposure to THIP, a potential therapeutic medicine, appears capable of controlling neuronal hyperexcitability in Mecp2-/Y mice, which occurs in the absence of THIP in the recording solution, lasts at least 1 week after withdrawal, and may contribute to the RTT-like symptom mitigation.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Agonistas de Receptores de GABA-A/administração & dosagem , Isoxazóis/administração & dosagem , Locus Cerúleo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Síndrome de Rett/fisiopatologia , Tegmento Mesencefálico/efeitos dos fármacos , Animais , Apneia/fisiopatologia , Apneia/prevenção & controle , Modelos Animais de Doenças , Feminino , Agonistas de Receptores de GABA-A/uso terapêutico , Isoxazóis/uso terapêutico , Locus Cerúleo/fisiopatologia , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/fisiologia , Receptores de GABA-A , Síndrome de Rett/prevenção & controle , Tegmento Mesencefálico/fisiopatologia
10.
Neuropharmacology ; 116: 288-299, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28069353

RESUMO

Rett Syndrome (RTT) is a neurodevelopmental disorder caused by mutations of the MECP2 gene, affecting predominantly females. One of the characteristic features of the disease is defective brainstem autonomic function. In Mecp2-/Y mice, several groups of brainstem neurons are overly excitable, which causes destabilization of neuronal networks for the autonomic control. We have previously shown that the extrasynaptic GABAA receptor agonist THIP relieves many RTT-like symptoms in Mecp2-/Y mice. Although neuronal activity is inhibited by acute THIP exposure, how a chronic treatment affects neuronal excitability remains elusive. Thus, we performed studies to address whether increased excitability occurs in brainstem neurons of female Mecp2+/- mice, how the MeCP expression affects the neuronal excitability, and whether chronic THIP exposure improves the neuronal hyperexcitability. Symptomatic Mecp2+/- (sMecp2+/-) female mice were identified with a two-step screening system. Whole-cell recording was performed in brain slices after a prior exposure of the sMecp2+/- mice to a 5-week low-dose THIP. Neurons in the locus coeruleus (LC) and the mesencephalic trigeminal nucleus (Me5) showed excessive firing activity in the sMecp2+/- mice. THIP pretreatment reduced the hyperexcitability of both LC and Me5 neurons in the sMecp2+/- mice, to a similar level as their counterparts in Mecp2-/Y mice. In identified LC neurons, the hyperexcitability appeared to be determined by not only the MeCP2 expression, but also their environmental cues. The alleviation of LC neuronal hyperexcitability seems to benefit brainstem autonomic function as THIP also improved breathing abnormalities of these sMecp2+/- mice.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Isoxazóis/farmacologia , Neurônios/efeitos dos fármacos , Síndrome de Rett/tratamento farmacológico , Animais , Tronco Encefálico/patologia , Tronco Encefálico/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Neurônios/fisiologia , Distribuição Aleatória , Síndrome de Rett/patologia , Síndrome de Rett/fisiopatologia , Técnicas de Cultura de Tecidos
11.
J Cell Physiol ; 232(5): 1151-1164, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27670841

RESUMO

People with Rett syndrome (RTT) have defects in motor function also seen in Mecp2-null mice. Motor function depends on not only central motor commands but also sensory feedback that is vulnerable to changes in excitability of propriosensory neurons. Here we report evidence for hyperexcitability of mesencephalic trigeminal (Me5) neurons in Mecp2-null mice and a novel cellular mechanism for lowering its impact. In in vitro brain slices, the Me5 neurons in both Mecp2-/Y male and symptomatic Mecp2+/- female mice were overly excitable showing increased firing activity in comparison to their wild-type (WT) male and asymptomatic counterparts. In Mecp2-/Y males, Me5 neurons showed a reduced firing threshold. Consistently, the steady-state activation of voltage-gated Na+ currents (INa ) displayed a hyperpolarizing shift in the Mecp2-null neurons with no change in the INa density. This seems to be due to NaV1.1, SCN1B and SCN4B overexpression and NaV1.2 and SCN3B under-expression. In contrast to the hyperexcitability, the sag potential and postinhibitory rebound (PIR) were reduced in Mecp2-null mice. In voltage-clamp, the IH density was deficient by ∼33%, and the steady-state half-activation had a depolarizing shift of ∼10 mV in the Mecp2-null mice. Quantitative PCR analysis indicated that HCN2 was decreased, HCN1 was upregulated with no change in HCN4 in Mecp2-/Y mice compared to WT. Lastly, blocking IH reduced the firing rate much more in WT than in Mecp2-null neurons. These data suggest that the Mecp2 defect causes an increase in Me5 neuronal excitability likely attributable to alterations in INa , meanwhile IH is reduced likely altering neuronal excitability as well. J. Cell. Physiol. 232: 1151-1164, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Canais Iônicos/metabolismo , Potenciais da Membrana , Mesencéfalo/metabolismo , Neurônios/metabolismo , Síndrome de Rett/metabolismo , Nervo Trigêmeo/citologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Modelos Animais de Doenças , Feminino , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Pirimidinas/farmacologia , Síndrome de Rett/patologia , Canais de Sódio/metabolismo
12.
Respir Physiol Neurobiol ; 245: 45-52, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27884797

RESUMO

A characteristic feature of Rett syndrome (RTT) is abnormal breathing accompanied by several other neurological and cognitive disorders. Since RTT rodent models became available, studies have begun shedding insight into the breathing abnormalities at behavioral, cellular and molecular levels. Defects are found in several groups of brainstem neurons involved in respiratory control, and potential neural mechanisms have been suggested. The findings in animal models are helpful in therapeutic strategies for people with RTT with respect to lowering sudden and unexpected death, preventing secondary developmental consequences, and improving the quality of lives.


Assuntos
Transtornos Respiratórios/fisiopatologia , Síndrome de Rett/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Humanos
13.
J Neurodev Disord ; 8: 37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777634

RESUMO

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder caused mostly by disruptions in the MECP2 gene. MECP2-null mice show imbalances in neuronal excitability and synaptic communications. Several previous studies indicate that augmenting synaptic GABA receptors (GABAARs) can alleviate RTT-like symptoms in mice. In addition to the synaptic GABAARs, there is a group of GABAARs found outside the synaptic cleft with the capability to produce sustained inhibition, which may be potential therapeutic targets for the control of neuronal excitability in RTT. METHODS: Wild-type and MECP2-null mice were randomly divided into four groups, receiving the extrasynaptic GABAAR agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride (THIP) and vehicle control, respectively. Low-dose THIP was administered to neonatal mice through lactation. RTT-like symptoms including lifespan, breathing, motor function, and social behaviors were studied when mice became mature. Changes in neuronal excitability and norepinephrine biosynthesis enzyme expression were studied in electrophysiology and molecular biology. RESULTS: With no evident sedation and other adverse side effects, early-life exposure to THIP extended the lifespan, alleviated breathing abnormalities, enhanced motor function, and improved social behaviors of MECP2-null mice. Such beneficial effects were associated with stabilization of locus coeruleus neuronal excitability and improvement of norepinephrine biosynthesis enzyme expression. CONCLUSIONS: THIP treatment in early lives might be a therapeutic approach to RTT-like symptoms in MECP2-null mice and perhaps in people with RTT as well.

14.
Am J Physiol Cell Physiol ; 311(6): C895-C909, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27653984

RESUMO

Rett Syndrome (RTT) is an X-linked neurodevelopmental disorder caused mostly by disruption of the MECP2 gene. Among several RTT-like mouse models, one of them is a strain of mice that carries an R168X point mutation in Mecp2 and resembles one of the most common RTT-causing mutations in humans. Although several behavioral defects have previously been found in the Mecp2R168X/Y mice, alterations in nerve cells remain unknown. Here we compare several behavioral and cellular outcomes between this Mecp2R168X/Y model and a widely used Mecp2Bird/Y mouse model. With lower body weight and shorter lifespan than their wild-type littermates, the Mecp2R168X/Y mice showed impairments of breathing and motor function. Thus we studied brainstem CO2-chemosensitive neurons and propriosensory cells that are associated with these two functions, respectively. Neurons in the locus coeruleus (LC) of both mutant strains showed defects in their intrinsic membrane properties, including changes in action potential morphology and excessive firing activity. Neurons in the mesencephalic trigeminal nucleus (Me5) of both strains displayed a higher firing response to depolarization than their wild-type littermates, likely attributable to a lower firing threshold. Because the increased excitability in LC and Me5 neurons tends to impact the excitation-inhibition balances in brainstem neuronal networks as well as their associated functions, it is likely that the defects in the intrinsic membrane properties of these brainstem neurons contribute to the breathing abnormalities and motor dysfunction. Furthermore, our results showing comparable phenotypical outcomes of Mecp2R168X/Y mice with Mecp2Bird/Y mice suggest that both strains are valid animal models for RTT research.


Assuntos
Locus Cerúleo/patologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Atividade Motora/fisiologia , Neurônios/metabolismo , Neurônios/patologia , Síndrome de Rett/metabolismo , Síndrome de Rett/patologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Respiração
15.
J Neurodev Disord ; 8: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313794

RESUMO

BACKGROUND: Rett Syndrome (RTT) is a neurodevelopmental disease caused by the disruption of the MECP2 gene. Several mouse models of RTT have been developed with Mecp2 disruptions. Although the mouse models are widely used in RTT research, results obtained need to be validated in other species. Therefore, we performed these studies to characterize phenotypes of a novel Mecp2 (-/Y) rat model and compared them with the Mecp2 (tm1.1Bird) mouse model of RTT. METHODS: RTT-like phenotypes were systematically studied and compared between Mecp2 (-/Y) rats and Mecp2 (-/Y) mice. In-cage conditions of the rats were monitored. Grip strength and spontaneous locomotion were used to evaluate the motor function. Three-chamber test was performed to show autism-type behaviors. Breathing activity was recorded with the plethysmograph. Individual neurons in the locus coeruleus (LC) were studied in the whole-cell current clamp. The lifespan of the rats was determined with their survival time. RESULTS: Mecp2 (-/Y) rats displayed growth retardation, malocclusion, and lack of movements, while hindlimb clasping was not seen. They had weaker forelimb grip strength and a lower rate of locomotion than the WT littermates. Defects in social interaction with other rats were obvious. Breathing frequency variation and apnea in the null rats were significantly higher than in the WT. LC neurons in the null rats showed excessive firing activity. A half of the null rats died in 2 months. Most of the RTT-like symptoms were comparable to those seen in Mecp2 (-/Y) mice, while some appeared more or less severe. The findings that most RTT-like symptoms exist in the rat model with moderate variations and differences from the mouse models support the usefulness of both Mecp2 (-/Y) rodent models. CONCLUSIONS: The novel Mecp2 (-/Y) rat model recapitulated numerous RTT-like symptoms as Mecp2 (-/Y) mouse models did, which makes it a valuable alternative model in the RTT studies when the body size matters.

16.
J Neurosci Res ; 94(10): 896-906, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27317352

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder affecting multiple functions, including the norepinephrine (NE) system. In the CNS, NE is produced mostly by neurons in the locus coeruleus (LC), where defects in intrinsic neuronal properties, NE biosynthetic enzymes, neuronal CO2 sensitivity, and synaptic currents have been reported in mouse models of RTT. LC neurons in methyl-CpG-binding protein 2 gene (Mecp2) null mice show a high rate of spontaneous firing, although whether such hyperexcitability might increase or decrease the NE release from synapses is unknown. To activate the NEergic axonal terminals selectively, we generated an optogenetic mouse model of RTT in which NEergic neuronal excitability can be manipulated with light. Using commercially available mouse breeders, we produced a new strain of double-transgenic mice with Mecp2 knockout and channelrhodopsin (ChR) knockin in catecholaminergic neurons. Several RTT-like phenotypes were found in the tyrosine hydroxylase (TH)-ChR-Mecp2(-/Y) mice, including hypoactivity, low body weight, hindlimb clasping, and breathing disorders. In brain slices, optostimulation produced depolarization and an increase in the firing rate of LC neurons from TH-ChR control mice. In TH-ChR control mice, optostimulation of presynaptic NEergic neurons augmented the firing rate of hypoglossal neurons (HNs), which was blocked by the α-adrenoceptor antagonist phentolamine. Such optostimulation of NEergic terminals had almost no effect on HNs from two or three TH-ChR-Mecp2(-/Y) mice, indicating that excessive excitation of presynaptic neurons does not benefit NEergic modulation in mice with Mecp2 disruption. These results also demonstrate the feasibility of generating double-transgenic mice for studies of RTT with commercially available mice, which are inexpensive, labor/time efficient, and promising for cell-specific stimulation. © 2016 Wiley Periodicals, Inc.


Assuntos
Modelos Animais de Doenças , Locus Cerúleo/patologia , Neurônios/fisiologia , Norepinefrina/metabolismo , Optogenética , Síndrome de Rett/genética , Síndrome de Rett/patologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Dopamina beta-Hidroxilase/metabolismo , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Fentolamina/farmacologia , Síndrome de Rett/fisiopatologia , Rodopsina/genética , Rodopsina/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
PLoS One ; 11(1): e0146470, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26785258

RESUMO

The locus coeruleus (LC)-norepinephrine (NE) system in the brainstem plays a critical role in a variety of behaviors is an important target of pharmacological intervention to several neurological disorders. Although GABA is the major inhibitory neurotransmitter of LC neurons, the modulation of LC neuronal firing activity by local GABAergic interneurons remains poorly understood with respect to their precise location, intrinsic membrane properties and synaptic modulation. Here, we took an optogenetic approach to address these questions. Channelrhodopsin (ChR2) in a tandem with the yellow fluorescent protein (YFP) was expressed in GABAergic neurons under the control of glutamic acid decarboxylase 2 (GAD2) promoter. Immediately dorsomedial to the LC nucleus, a group of GABAergic neurons was observed. They had small soma and were densely packed in a small area, which we named the dorsomedial LC or dmLC nucleus. These GABAergic neurons showed fast firing activity, strong inward rectification and spike frequency adaptation. Lateral inhibition among these GABAergic neurons was observed. Optostimulation of the dmLC area drastically inhibited LC neuronal firing frequency, expanded the spike intervals, and reset their pacemaking activity. Analysis of the light evoked inhibitory postsynaptic currents (IPSCs) indicated that they were monosynaptic. Such light evoked IPSCs were not seen in slices where this group of GABAergic neurons was absent. Thus, an isolated group of GABAergic neurons is demonstrated in the LC area, whose location, somatic morphology and intrinsic membrane properties are clearly distinguishable from adjacent LC neurons. They interact with each and may inhibit LC neurons as well as a part of local neuronal circuitry in the LC.


Assuntos
Neurônios GABAérgicos/citologia , Locus Cerúleo/citologia , Animais , Separação Celular , Rastreamento de Células , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/fisiologia , Interneurônios/citologia , Interneurônios/fisiologia , Locus Cerúleo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Técnicas de Patch-Clamp , Transmissão Sináptica/fisiologia
18.
PLoS One ; 10(12): e0145508, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26700160

RESUMO

Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-ß-S and choleratoxin suggested that currents weren't determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Endotélio Vascular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Artéria Pulmonar/metabolismo , Animais , Western Blotting , Bovinos , Células Cultivadas , Endotélio Vascular/citologia , Técnicas Imunoenzimáticas , Técnicas de Patch-Clamp , Fosforilação , Artéria Pulmonar/citologia
19.
J Physiol Sci ; 65(5): 451-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071253

RESUMO

Rett syndrome (RTT) is a female neurodevelopmental disease with breathing abnormalities. To understand whether breathing defects occur in the early lives of a group of female Mecp2(+/-) mice, a mouse model of RTT, and what percentage of mice shows RTT-like breathing abnormality, breathing activity was measured by plethysmography in conscious mice. Breathing frequency variation and central apnea in a group of Mecp2(+/-) females displayed a distribution pattern similar to Mecp2(-/Y) males, while the rest resembled the wild-type mice. Similar results were obtained using the k-mean clustering statistics analysis. With two independent methods, about 20% of female Mecp2(+/-) mice showed RTT-like breathing abnormalities that began as early as 3 weeks of age in the Mecp2(+/-) mice, and were suppressed with 3% CO2. The finding that only a small proportion of Mecp2(+/-) mice develops RTT-like breathing abnormalities suggests incomplete allele inactivation in the RTT-model Mecp2(+/-) mice.


Assuntos
Pulmão/fisiopatologia , Respiração , Síndrome de Rett/fisiopatologia , Administração por Inalação , Fatores Etários , Animais , Apneia/genética , Apneia/fisiopatologia , Dióxido de Carbono/administração & dosagem , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Heterozigoto , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos Knockout , Fenótipo , Pletismografia , Taxa Respiratória , Síndrome de Rett/genética , Síndrome de Rett/terapia
20.
Vascul Pharmacol ; 74: 122-129, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26015375

RESUMO

Endothelium lining the interior of cardiovascular system and most visceral organs plays an important role in vascular function. Its dysfunction occurs in some of the most challenging diseases. An important function of the endothelium is to release vasoactive substances that act on the smooth muscle to change vascular tones. Substance secretion from endocrine cells relies on membrane potentials and firing activity, while it is unclear whether the membrane potential regulates substance release from the ECs. Understanding of this requires selective intervention to membrane potentials of the endothelial cells in situ. Here we show a novel intervention to endothelial cells using the optogenetic approach. A strain of transgenic mice was developed with the Cre-loxP recombination system. These transgenic mice expressed channelrhodopsin (ChR) in endothelial cells driven by the vascular endothelial cadherin or cdh5 promoter. Linked in a tandem with YFP, the ChR expression was detected by YFP fluorescence in various endothelium-lining tissues and organs. The YFP fluorescence was observed in the lumen of blood vessels and pericardium, but not in tissues beneath the endothelium lining. Optostimulation of dissociated endothelial cells evoked inward currents and depolarization. In the isolated and perfused heart, surprisingly, optostimulation of endothelial cells produced fast, robust, reproducible and long-lasting vasoconstriction that was not blocked by either ET-1A or TXA2 receptor antagonist. Similar optical vasoconstriction was found in the isolated and perfused kidney. These results indicate that the optogenetics is an effective intervention to vascular endothelium where optostimulation produces vasoconstriction.


Assuntos
Endotélio Vascular/metabolismo , Endotélio Vascular/fisiologia , Músculo Liso Vascular/fisiologia , Animais , Rim/patologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Vasoconstrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA