Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Small ; : e2402402, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949051

RESUMO

Doping transition metal oxide spinels with metal ions represents a significant strategy for optimizing the electronic structure of electrocatalysts. Herein, a bimetallic Fe and Ru doping strategy to fine-tune the crystal structure of CoV2O4 spinel for highly enhanced oxygen evolution reaction (OER) is presented performance. The incorporation of Fe and Ru is observed at octahedral sites within the CoV2O4 structure, effectively modulating the electronic configuration of Co. Density functional theory calculations have confirmed that Fe acts as a novel reactive site, replacing V. Additionally, the synergistic effect of Fe, Co, and Ru effectively optimizes the Gibbs free energy of the intermediate species, reduces the reaction energy barrier, and accelerates the kinetics toward OER. As expected, the best-performing CoVFe0.5Ru0.5O4 displays a low overpotential of 240 mV (@10 mA cm-2) and a remarkably low Tafel slope of 38.9 mV dec-1, surpassing that of commercial RuO2. Moreover, it demonstrates outstanding long-term durability lasting for 72 h. This study provides valuable insights for the design of highly active polymetallic spinel electrocatalysts for energy conversion applications.

2.
Adv Sci (Weinh) ; : e2401137, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868913

RESUMO

Due to its decade-long progression, colorectal cancer (CRC) is most suitable for population screening to achieve a significant reduction in its incidence and mortality. DNA methylation has emerged as a potential marker for the early detection of CRC. However, the current mainstream methylation detection method represented by bisulfite conversion has issues such as tedious operation, DNA damage, and unsatisfactory sensitivity. Herein, a new high-performance CRC screening tool based on the promising specific terminal-mediated polymerase chain reaction (STEM-PCR) strategy is developed. CRC-related methylation-specific candidate CpG sites are first prescreened through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases using self-developed bioinformatics. Next, 9 homebrew colorectal cancer DNA methylated STEM‒PCR assays (ColoC-mSTEM) with high sensitivity (0.1%) and high specificity are established to identify candidate sites. The clinical diagnostic performance of these selected methylation sites is confirmed and validated by a case-control study. The optimized diagnostic model has an overall sensitivity of 94.8% and a specificity of 95.0% for detecting early-stage CRC. Taken together, ColoC-mSTEM, based on a single methylation-specific site, is a promising diagnostic approach for the early detection of CRC which is perfectly suitable for the screening needs of CRC in primary healthcare institutions.

3.
J Colloid Interface Sci ; 673: 19-25, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870664

RESUMO

Developing highly active and durable non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER) is crucial in achieving efficient energy conversion. Herein, we reported a CoNiAl0.5O/NF nanofilament that exhibits higher OER activity than previously reported IrO2-based catalysts in alkaline solution. The as-synthesized CoNiAl0.5O/NF catalyst demonstrates a low overpotential of 230 mV at a current density of 100 mA cm-2, indicating its high catalytic efficiency. Furthermore, the catalyst exhibits a Tafel slope of 26 mV dec-1, suggesting favorable reaction kinetics. The CoNiAl0.5O/NF catalyst exhibits impressive stability, ensuring its potential for practical applications. Detailed characterizations reveal that the enhanced activity of CoNiAl0.5O/NF can be attributed to the electronic modulation achieved through Al3+ incorporation, which promotes the emergence of higher-valence Ni metal, facilitating nanofilament formation and improving mass transport and charge transfer processes. The synergistic effect between nanofilaments and porous nickel foam (NF) substrate significantly enhances the electrical conductivity of this catalyst material. This study highlights the significance of electronic structures for improving the activity of cost-effective and non-precious metal-based electrocatalysts for the OER.

4.
Chem Biol Interact ; 394: 110987, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574835

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals that persist in the environment and bioaccumulate in animals and humans. There is growing evidence that PFAS exposure adversely impacts neurodevelopment and neurological health. Steroid 5α-reductase 1 (SRD5A1) plays a key role in neurosteroidogenesis by catalyzing the conversion of testosterone or pregnenolone to neuroactive steroids, which influence neural development, cognition, mood, and behavior. This study investigated the inhibitory strength and binding interactions of 18 PFAS on human and rat SRD5A1 activity using enzyme assays, molecular docking, and structure-activity relationship analysis. Results revealed that C9-C14 PFAS carboxylic acid at 100 µM significantly inhibited human SRD5A1, with IC50 values ranged from 10.99 µM (C11) to 105.01 µM (C14), and only one PFAS sulfonic acid (C8S) significantly inhibited human SRD5A1 activity, with IC50 value of 8.15 µM. For rat SRD5A1, C9-C14 PFAS inhibited rat SRD5A1, showing the similar trend, depending on carbon number of the carbon chain. PFAS inhibit human and rat SRD5A1 in a carbon chain length-dependent manner, with optimal inhibition around C11. Kinetic studies indicated PFAS acted through mixed inhibition. Molecular docking revealed PFAS bind to the domain between NADPH and testosterone binding site of both SRD5A1 enzymes. Inhibitory potency correlated with physicochemical properties like carbon number of the carbon chain. These findings suggest PFAS may disrupt neurosteroid synthesis and provide insight into structure-based inhibition of SRD5A1.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Simulação de Acoplamento Molecular , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/química , Animais , Humanos , Ratos , Relação Estrutura-Atividade , Proteínas de Membrana/metabolismo , Fluorocarbonos/química , Fluorocarbonos/metabolismo , Fluorocarbonos/farmacologia , Ligação Proteica , Carbono/química , Carbono/metabolismo , Sítios de Ligação
5.
J Agric Food Chem ; 72(18): 10616-10626, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656193

RESUMO

Deoxynivalenol (DON) is a common food contaminant that can impair male reproductive function. This study investigated the effects and mechanisms of DON exposure on progenitor Leydig cell (PLC) development in prepubertal male rats. Rats were orally administrated DON (0-4 mg/kg) from postnatal days 21-28. DON increased PLC proliferation but inhibited PLC maturation and function, including reducing testosterone levels and downregulating biomarkers like HSD11B1 and INSL3 at ≥2 mg/kg. DON also stimulated mitochondrial fission via upregulating DRP1 and FIS1 protein levels and increased oxidative stress by reducing antioxidant capacity (including NRF2, SOD1, SOD2, and CAT) in PLCs in vivo. In vitro, DON (2-4 µM) inhibited PLC androgen biosynthesis, increased reactive oxygen species production and protein levels of DRP1, FIS1, MFF, and pAMPK, decreased mitochondrial membrane potential and MFN1 protein levels, and caused mitochondrial fragmentation. The mitochondrial fission inhibitor mdivi-1 attenuated DON-induced impairments in PLCs. DON inhibited PLC steroidogenesis, increased oxidative stress, perturbed mitochondrial homeostasis, and impaired maturation. In conclusion, DON disrupts PLC development in prepubertal rats by stimulating mitochondrial fission.


Assuntos
Células Intersticiais do Testículo , Mitocôndrias , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos Sprague-Dawley , Tricotecenos , Animais , Masculino , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos , Células Intersticiais do Testículo/efeitos dos fármacos , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/citologia , Tricotecenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Testosterona/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos
6.
Lupus ; 33(5): 470-480, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442229

RESUMO

OBJECTIVE: This study aimed to investigate the correlation between positive psychological capital, post-traumatic growth, social support, and quality of life (QOL) in patients with systemic lupus erythematosus (SLE). METHODS: A cross-sectional study was conducted at the First Affiliated Hospital of Xinjiang Medical University from October 2022 to May 2023. A sample of 330 hospitalized SLE patients was selected for this study. The collected data included demographic information, the SLE disease activity index, the Positive Mental Capital Questionnaire, the Chinese version of the Post-Traumatic Growth Scale, the Social Support Rating Scale, and the Chinese version of the Lupus Quality of Life Scale. RESULTS: The QOL score among the 330 SLE patients was measured as M(P25, P75) of 105 (83.00,124.00). Positive psychological capital, post-traumatic growth, and social support demonstrated significant positive correlations with the QOL in SLE patients (p < 0.05). Multiple linear regression analysis revealed that literacy, disease level, disease duration, occupation, marital status, psychological capital, social support, and post-traumatic growth were influential factors associated with the QOL in SLE patients. CONCLUSION: Medical professionals should be attentive to the psychological well-being of SLE patients and should consider implementing early psychological interventions. These interventions are crucial for enhancing the QOL for individuals diagnosed with SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Crescimento Psicológico Pós-Traumático , Humanos , Qualidade de Vida/psicologia , Estudos Transversais , Lúpus Eritematoso Sistêmico/complicações , Apoio Social , Inquéritos e Questionários
7.
Comput Biol Chem ; 109: 108027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340414

RESUMO

Channel-regulated peptides (CRPs) derived from animal venom hold great promise as potential drug candidates for numerous diseases associated with channel proteins. However, discovering and identifying CRPs using traditional bio-experimental methods is a time-consuming and laborious process. While there were a few computational studies on CRPs, they were limited to specific channel proteins, relied heavily on complex feature engineering, and lacked the incorporation of multi-source information. To address these problems, we proposed a novel deep learning model, called DeepCRPs, based on graph neural networks for systematically mining CRPs from animal venom. By combining the sequence semantic and structural information, the classification performance of four CRPs was significantly enhanced, reaching an accuracy of 0.92. This performance surpassed baseline models with accuracies ranging from 0.77 to 0.89. Furthermore, we employed advanced interpretable techniques to explore sequence and structural determinants relevant to the classification of CRPs, yielding potentially valuable bio-function interpretations. Comprehensive experimental results demonstrated the precision and interpretive capability of DeepCRPs, making it an accurate and bio-explainable suit for the identification and categorization of CRPs. Our research will contribute to the discovery and development of toxin peptides targeting channel proteins. The source data and code are freely available at https://github.com/liyigerry/DeepCRPs.


Assuntos
Semântica , Peçonhas , Animais , Peptídeos , Redes Neurais de Computação
8.
Biofactors ; 50(2): 266-293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38059412

RESUMO

Ferroptosis is a new form of regulated cell death caused by iron-dependent accumulation of lethal polyunsaturated phospholipids peroxidation. It has received considerable attention owing to its putative involvement in a wide range of pathophysiological processes such as organ injury, cardiac ischemia/reperfusion, degenerative disease and its prevalence in plants, invertebrates, yeasts, bacteria, and archaea. To counter ferroptosis, living organisms have evolved a myriad of intrinsic efficient defense systems, such as cyst(e)ine-glutathione-glutathione peroxidase 4 system (cyst(e)ine-GPX4 system), guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin (BH4) system (GCH1/BH4 system), ferroptosis suppressor protein 1/coenzyme Q10 system (FSP1/CoQ10 system), and so forth. Among these, GPX4 serves as the only enzymatic protection system through the reduction of lipid hydroperoxides, while other defense systems ultimately rely on small compounds to scavenge lipid radicals and prevent ferroptotic cell death. In this article, we systematically summarize the chemical biology of lipid radical trapping process by endogenous chemicals, such as coenzyme Q10 (CoQ10), BH4, hydropersulfides, vitamin K, vitamin E, 7-dehydrocholesterol, with the aim of guiding the discovery of novel ferroptosis inhibitors.


Assuntos
Cistos , Ubiquinona , Humanos , Ubiquinona/metabolismo , Peroxidação de Lipídeos , Morte Celular , Peróxidos Lipídicos/metabolismo
9.
Huan Jing Ke Xue ; 44(11): 6062-6070, 2023 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-37973090

RESUMO

Elucidating the main sources and transformation process of nitrate for the prevention and control of groundwater nitrogen pollution and the development and utilization of groundwater resources has great significance. To explore the current situation and source of nitrate pollution in shallow groundwater around the Dianchi Lake, 73 shallow groundwater samples were collected in the rainy season in 2020(October) and dry season in 2021(April). Using the hydrochemistry and nitrogen and oxygen isotopes(δ15N-NO3- and δ18O-NO3-), the spatial distribution, source, and transformation process of nitrate in shallow groundwater were identified. The contribution of nitrogen from different sources to nitrate in shallow groundwater was quantitatively evaluated using the isotope mixing model(SIAR). The results showed that in nearly 40.5% of sampling points in the shallow groundwater in the dry season, ρ(NO3--N) exceeded the 20 mg·L-1 specified in the Class Ⅲ water quality standard for groundwater(GB/T 14848), and in more than 47.2% of sampling points in the rainy season, ρ (NO3--N) exceeded 20 mg·L-1. The analysis results of nitrogen and oxygen isotopes and SIAR model showed that soil organic nitrogen, chemical fertilizer nitrogen, and manure and sewage nitrogen were the main sources of nitrate in shallow groundwater; these nitrogen sources contributed 13.9%, 11.8%, and 66.5% to nitrate in shallow groundwater in the dry season and 33.7%, 31.1%, and 25.9% in the rainy season, respectively. However, the contribution rate of atmospheric nitrogen deposition was only 8.5%, which contributed little to the source of nitrate in shallow groundwater in the study area. Nitrification was the leading process of nitrate transformation in shallow groundwater in the dry season, denitrification was the dominant process in the rainy season, and denitrification was more noticeable in the rainy season than that in the dry season.

10.
Altern Ther Health Med ; 29(8): 650-655, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37678870

RESUMO

Objective: To investigate the effects of Moringa Oleifera Leaf Extract (MOLE) plus rosiglitazone (RSG) on glucose and lipid metabolism, serum leptin, and the Akt/GSK3ß/ß-Catenin signaling pathway in type 2 diabetic (T2D) rats. Methods: Sixty male Sprague-Dawley (SD) rats were randomly divided into six groups: the normal group, the model group, the RSG group, the low- and high-dose MOLE group, and the MOLE+RSG group. The normal group was fed a standard rat diet, while the other groups were given a single intraperitoneal injection of low-dose streptozomycin (STZ) (35 mg/kg) and fed a high-sugar and high-fat diet. After 8 weeks, the treatment outcomes were evaluated by measuring key parameters of blood glucose and lipid metabolism and the protein kinase B (AKT) / Glycogen synthase kinase 3beta (GSK3ß) /ß-Catenin signaling pathway in the T2D rats. Results: Compared with the normal group, the model group showed significantly increased levels of blood glucose, blood lipids, serum leptin, free fatty acid (FFA), and tumor necrosis factor-α (TNF-α). Compared with the model group, the RSG, low-dose MOLE, and high-dose MOLE groups displayed effective control of blood glucose, blood lipids, serum leptin, FFA, and TNF-α. The MOLE+RSG group surpassed the RSG group in regulating glucose, lipid metabolism, and serum leptin levels in T2D rats. In addition, the MOLE+RSG group also had superiority over the RSG group in activating the AKT/GSK3ß/ß-Catenin pathway. Conclusion: MOLE plus RSG can effectively reduce blood glucose and blood lipids in T2DM rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Moringa oleifera , Ratos , Masculino , Animais , Rosiglitazona/uso terapêutico , Glucose/metabolismo , Glicemia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Moringa oleifera/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , beta Catenina/uso terapêutico , Leptina/metabolismo , Leptina/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Metabolismo dos Lipídeos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/uso terapêutico , Ratos Sprague-Dawley , Lipídeos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
11.
Environ Res ; 237(Pt 2): 116974, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37625537

RESUMO

The wide use of antibiotics in aquaculture has triggered global ecological security issue. Microalgal bioremediation is a promising strategy for antibiotics elimination due to carbon recovery, detoxification and various ecological advantages. However, a lack of understanding with respect to the corresponding regulation mechanism towards antibiotic stress may limit its practical applicability. The microalga Scenedesmus obliquus was shown to be capable of effectively eliminating ciprofloxacin (CIP), which is a common antibiotic used in aquaculture. However, the corresponding transcriptional alterations require further investigation and verification at the metabolomic level. Thus, this study uncovered the metabolomic profiles and detailed toxic and defense mechanisms towards CIP in S. obliquus using untargeted metabolomics. The enhanced oligosaccharide/polyol/lipid transport, up-regulation of carbohydrate and arachidonic acid metabolic pathways and increased energy production via EMP metabolism were observed as defense mechanisms of microalgal cells to xenobiotic CIP. The toxic metabolic responses included: (1) down-regulation of parts of mineral and organic transporters; (2) electrons competition between antibiotic and NAD during intracellular CIP degradation; and (3) suppressed expression of the hem gene in chlorophyll biosynthesis. This study describes the metabolic profile of microalgae during CIP elimination and reveals the key pathways from the perspective of metabolism, thereby providing information on the precise regulation of antibiotic bioremediation via microalgae.

12.
Bioresour Technol ; 384: 129317, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315625

RESUMO

This study explores the simultaneous sulfamethoxazole (SMX) removal and short-chain fatty acids (SCFAs) production by a Clostridium sensu stricto-dominated microbial consortium. SMX is a commonly prescribed and persistent antimicrobial agent frequently detected in aquatic environments, while the prevalence of antibiotic-resistant genes limits the biological removal of SMX. Under strictly anaerobic conditions, sequencing batch cultivation coupled with co-metabolism resulted in the production of butyric acid, valeric acid, succinic acid, and caproic acid. Continuous cultivation in a CSTR achieved a maximum butyric acid production rate and yield of 0.167 g/L/h and 9.56 mg/g COD, respectively, while achieving a maximum SMX degradation rate and removal capacity of 116.06 mg/L/h and 55.8 g SMX/g biomass. Furthermore, continuous anaerobic fermentation reduced sul genes prevalence, thus limiting the transmission of antibiotic resistance genes during antibiotic degradation. These findings suggest a promising approach for efficient antibiotic elimination while simultaneously producing valuable products (e.g., SCFAs).


Assuntos
Antibacterianos , Sulfametoxazol , Fermentação , Ácidos Graxos Voláteis , Ácido Butírico
13.
Molecules ; 28(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175147

RESUMO

H1.6Mn1.6O4 lithium-ion screen adsorbents were synthesized by soft chemical synthesis and solid phase calcination and then applied to the recovery of metal Li and Co from waste cathode materials of a lithium cobalt oxide-based battery. The leaching experiments of cobalt and lithium from cathode materials by a citrate hydrogen peroxide system and tartaric acid system were investigated. The experimental results showed that under the citrate hydrogen peroxide system, when the temperature was 90 °C, the rotation speed was 600 r·min-1 and the solid-liquid ratio was 10 g·1 L-1, the leaching rate of Co and Li could reach 86.21% and 96.9%, respectively. Under the tartaric acid system, the leaching rates of Co and Li were 90.34% and 92.47%, respectively, under the previous operating conditions. The adsorption results of the lithium-ion screen showed that the adsorbents were highly selective for Li+, and the maximum adsorption capacities were 38.05 mg·g-1. In the process of lithium removal, the dissolution rate of lithium was about 91%, and the results of multiple cycles showed that the stability of the adsorbent was high. The recovery results showed that the purity of LiCl, Li2CO3 and CoCl2 crystals could reach 93%, 99.59% and 87.9%, respectively. LiCoO2 was regenerated by the sol-gel method. XRD results showed that the regenerated LiCoO2 had the advantages of higher crystallinity and less impurity.

14.
Regen Biomater ; 10: rbad021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020753

RESUMO

Cu-mediated chemodynamic therapy (CDT) has attracted prominent attention owing to its advantages of pH independence and high efficiency comparing to Fe-mediated CDT, while the application of Cu-based CDT agents was impeded due to the high copper consumption caused by the metabolism loss of copper and the resultant potential toxicity. Herein, we developed a new copper-mediated CDT agent with extremely low Cu usage by anchoring copper on cross-linked lipoic acid nanoparticles (Cu@cLAs). After endocytosis into tumor cells, the Cu@cLAs were dissociated into LA and dihydrolipoic acid (DHLA) (reduced form of LA) and released Cu2+ and Cu+ (oxidized form of Cu2+), the two redox couples recycled each other in cells to achieve the efficient killing of cancer cells by delaying metabolic loss and increasing the ROS level of tumor cells. The self-recycling was confirmed in cells by the sustained high Cu/DHLA content and persistent ROS generation process. The antitumor study based on the MCF-7/R nude mice gave the Cu@cLAs a tumor inhibitory rate up to 77.9% at the copper of 0.05 mg kg-1, the first dosage reported so far lower than that of normal serum copper (0.83 ± 0.21 mg kg-1). This work provides not only a new promising clinical strategy for the copper excessive use in copper-mediated CDT, but also gives a clue for other metal mediated disease therapies with the high metal consumption.

15.
J Mater Chem B ; 11(13): 2916-2926, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36892505

RESUMO

Immunogenic cell death (ICD) induced by reactive oxygen species (ROS) represents a particular form of tumor cell death for approaching the problem of low immunogenicity of tumors in immunotherapy, while the oxidative damage to normal cells of current ICD inducers hinders their clinical application. Herein, a new ICD inducer VC@cLAV constructed solely by dietary antioxidants, lipoic acid (LA) and vitamin C (VC), is developed, which could promote heavy intracellular ROS production in cancer cells for ICD induction while acting as an anti-oxidant in non-cancer cells for cytoprotection, and thus hold high biosafety. In vitro studies show that VC@cLAV induced a release of antigens and a maturation rate of DCs up to 56.5%, approaching the positive control (58.4%). In vivo combined with αPD-1, VC@cLAV showed excellent antitumor activity against both primary and distant metastatic tumors with an inhibition rate of 84.8% and 79.0% compared to 14.2% and 10.0% in the αPD-1 alone group. Notably, VC@cLAV established a long-term antitumor immune memory effect against tumor rechallenging. This study not only presents a new kind of ICD inducer but also provides an impetus for the development of dietary antioxidant-based cancer drugs.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Imunoterapia , Nanopartículas/uso terapêutico
16.
Front Aging Neurosci ; 15: 1040277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819714

RESUMO

Background: Sufficient attention to trunk rehabilitation after stroke is still lacking. Loss of trunk selective activity is considered to be the leading cause of trunk postural control disorder after stroke. "Taking the Waist as the Axis" Therapy (WAT) was developed as a combination of the concept of "Taking the Waist as the Axis" from Tai Chi and the rehabilitation of trunk dysfunction after stroke. The present clinical trial examined and assessed the effects of WAT on stroke patients. Methods: A total of 43 stroke hemiplegic patients with trunk postural control disorder, whose Trunk Impairment Scale (TIS) scoring between 8 and 18, participated in the present study and were allocated randomly to the experimental (n = 23) or control groups (n = 20). The experimental group received WAT plus conventional therapy, and the control group received "Trunk Selective Activity" Therapy (TSAT) plus conventional therapy. Both groups received treatment once daily and 5 times per week for 3 weeks. The Trunk Impairment Scale (TIS), Fugl-Meyer Assessment (FMA), Berg Balance Scale (BBS), change of Intra-abdominal Pressure (IAP), static balance ability assessment, rapid ventilation lung function test and the Modified Barthel Index (MBI) were evaluated before and after intervention for both groups. Results: The experimental group was superior to the control group in TIS [4 (2, 5) vs. 3 (1.25, 4), p = 0.030], change of IAP [-3 (-8, -1.33) vs. -0.02 (-3.08, 6), p = 0.011], FMA-upper extremity [10 (6, 18) vs. 1 (0, 3), p = 0.002], FMA-lower extremity [2 (1, 4) vs. 1 (0, 2), p = 0.009] and FMA [14 (7, 21) vs. 2 (0.25, 3.75), p = 0.001]. Within experimental group, forced vital capacity (FVC) [81.35 (63.30, 94.88) vs. 91.75 (79.40, 97.90), p = 0.02] was significantly improved. Conclusion: WAT was an effective trunk treatment after stroke, which significantly improved the patients' trunk posture control ability, motor function and forced vital capacity. However, the results still need to be interpreted with caution for the intervention only lasted for 3 weeks.

17.
Front Public Health ; 11: 1294341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249400

RESUMO

Objective: Improving the detection capability and efficiency of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA specimens is very important for the prevention and control of the outbreak of Coronavirus disease 2019 (COVID-19). In this study, we evaluated the detection capability and efficiency of two outbreaks of COVID-19 before and after the process re-engineering in April and July 2022. Methods: This retrospective cross-sectional study involved 359,845 SARS-CoV-2 RNA specimens 2 weeks before and 2 weeks after the two outbreaks of COVID-19 in April and July. The number, transportation time and detection time of specimens, and the number of reports of more than 24 h were analyzed by SPSS software. Results: While 16.84% of people chose nasopharyngeal swabs (NPS) specimens, 83.16% chose oropharyngeal swabs (OPS) specimens to detect SARS-CoV-2 RNA. There were significant upward trends in the percentage of 10 sample pooling (P-10) from April before process re-engineering to July after process re-engineering (p < 0.001). Compared with April, the number of specimens in July increased significantly not only 2 weeks before but also 2 weeks after the outbreak of COVID-19, with an increase of 35.46 and 93.94%, respectively. After the process re-engineering, the number of reports more than 24 h in the 2 weeks before and after the outbreak of COVID-19 in July was significantly lower than that in April before process re-engineering (0% vs. 0.06% and 0 vs. 0.89%, both p < 0.001). Conclusion: The present study shows that strengthening the cooperation of multi-departments in process re-engineering, especially using the P-10 strategy and whole process informatization can improve the detection capability and efficiency of SARS-CoV-2 RNA specimens.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , SARS-CoV-2/genética , Estudos Transversais , RNA Viral , Estudos Retrospectivos
18.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560157

RESUMO

With the continuous progress of development, deep learning has made good progress in the analysis and recognition of images, which has also triggered some researchers to explore the area of combining deep learning with hyperspectral medical images and achieve some progress. This paper introduces the principles and techniques of hyperspectral imaging systems, summarizes the common medical hyperspectral imaging systems, and summarizes the progress of some emerging spectral imaging systems through analyzing the literature. In particular, this article introduces the more frequently used medical hyperspectral images and the pre-processing techniques of the spectra, and in other sections, it discusses the main developments of medical hyperspectral combined with deep learning for disease diagnosis. On the basis of the previous review, tne limited factors in the study on the application of deep learning to hyperspectral medical images are outlined, promising research directions are summarized, and the future research prospects are provided for subsequent scholars.


Assuntos
Aprendizado Profundo , Diagnóstico por Imagem
19.
Front Vet Sci ; 9: 949462, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337200

RESUMO

Giardia duodenalis is an important zoonotic protozoon, which can infect a variety of animals, causing diarrhea and even death of animals or humans. Dairy cattle have been implicated as important sources of human G. duodenalis. However, the information about the prevalence and genetic diversity of G. duodenalis in dairy cattle in China's Yunnan Province remains limited. This study investigated the occurrence and multilocus genotyping of G. duodenalis of Holstein cattle in Yunnan Province, China. A total of 524 fresh fecal samples of Holstein cattle were randomly collected from 8 farms in Yunnan. In this study, 27.5% (144/524) of tested samples were positive for G. duodenalis infection. The highest infection ratio was found in preweaned calves (33.7%), and the infection rates of postweaned calves, growing cattle, and adult cattle were 24.5%, 23.0%, and 17.3%, respectively. The sequence analysis of SSU rRNA gene showed that the predominant assemblage of G. duodenalis in this study was assemblage E (97.9%, 141/144), whereas assemblage A was identified only in three samples (2.1%, 3/144). All G. duodenalis-positive samples were further assayed with nested polymerase chain reaction (PCR) targeting ß-giardin (bg), triosephosphate isomerase (tpi), and glutamate dehydrogenase (gdh) genes, and 87, 41, and 81 sequences were obtained, respectively. Mixed infection of assemblages A and E of G. duodenalis was detected in three samples. Multilocus genotyping yielded 23 multilocus genotypes (MLGs). This is the first study that reveals the prevalence data of G. duodenalis in Holstein cattle in Yunnan Province, and the results of this study provided baseline data for the prevention and control of G. duodenalis infection in Holstein cattle in Yunnan Province, China.

20.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807367

RESUMO

In this study, the adsorption method and micro-nano bubble (MNB) technology were combined to improve the efficiency of organic pollutant removal from dye wastewater. The adsorption properties of Congo red (CR) on raw coal and semi-coke (SC) with and without MNBs were studied. The mesoporosity of the coal strongly increased after the heat treatment, which was conducive to the adsorption of macromolecular organics, such as CR, and the specific surface area increased greatly from 2.787 m2/g to 80.512 m2/g. MNBs could improve the adsorption of both raw coal and SC under different pH levels, temperatures and dosages. With the use of MNBs, the adsorption capacity of SC reached 169.49 mg/g, which was much larger than that of the raw coal at 15.75 mg/g. The MNBs effectively reduced the adsorption time from 240 to 20 min. In addition, the MNBs could ensure the adsorbent maintained a good adsorption effect across a wide pH range. The removal rate was above 90% in an acidic environment and above 70% in an alkaline environment. MBs can effectively improve the rate of adsorption of pollutants by adsorbents. SC was obtained from low-rank coal through a rapid one-step heating treatment and was used as a kind of cheap adsorbent. The method is thus simple and easy to implement in the industrial context and has the potential for industrial promotion.


Assuntos
Coque , Poluentes Químicos da Água , Adsorção , Carvão Mineral , Vermelho Congo/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Águas Residuárias/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA