Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Environ Res ; 258: 119444, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914251

RESUMO

Coping with the critical challenge of imidacloprid (IMI) contamination in sewage treatment and farmland drainage purification, this study presents a pioneering development of an advanced modified graphitic white melon seed shells biochar (Fe/Zn@WBC). The Fe/Zn@WBC demonstrates a substantial enhancement in adsorption efficiency for IMI, achieving a remarkable removal rate of 87.69% within 30 min and a significantly higher initial adsorption rate parameter h = 4.176 mg g-1·min-1. This significant improvement outperforms WBC (12.22%, h = 0.115 mg g-1·min-1) and highlights the influence of optimized adsorption conditions at 900 °C and the graphitization degree resulting from Fe/Zn bimetallic oxide modification. Characterization analysis and batch sorption experiments including kinetics, isotherms, thermodynamics and pH factors illustrate that chemical adsorption is the main type of adsorption mechanism responsible for this superior ability to remove IMI through pore filling, hydrogen bonding, hydrophobic interaction, electrostatics interaction, π-π interactions as well as complexation processes. Furthermore, we demonstrate exceptional stability of Fe/Zn@WBC across a broad pH range (pH = 3-11), co-existing ions presence along with humic acid under various real water conditions while maintaining high removal efficiency. This study presents an advanced biochar adsorbent, Fe/Zn@WBC, with efficient adsorption capacity and easy preparation. Through three regeneration cycles via pyrolysis method, it demonstrates excellent pyrolysis regeneration capabilities with an average removal efficiency of 92.02%. The magnetic properties enable rapid separation facilitated by magnetic analysis. By elucidating the efficacy and mechanistic foundations of Fe/Zn@WBC, this research significantly contributes to the field of environmental remediation by providing a scalable solution for IMI removal and enhancing scientific understanding of bimetallic oxides-hydrophilic organic pollutant interactions.

2.
Sci Total Environ ; 939: 173509, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38815835

RESUMO

In recent years, neonicotinoid insecticides (NNIs), representing a new era of pest control, have increasingly replaced traditional classes such as organophosphorus compounds, carbamates, and pyrethroids due to their precise targeting and broad-spectrum efficacy. However, the high water solubility of NNIs has led to their pervasion in aquatic ecosystems, raising concerns about potential risks to non-target organisms and human health. Therefore, there is an urgent need for research on remediating NNI contamination in aquatic environments. This study demonstrates that biochar, characterized by its extensive surface area, intricate pore structure, and high degree of aromaticity holds significant promise for removing NNIs from water. The highest reported adsorption capacity of biochar for NNIs stands at 738.0 mg·g-1 with degradation efficiencies reaching up to 100.0 %. This review unveils that the interaction mechanisms between biochar and NNIs primarily involve π-π interactions, electrostatic interactions, pore filling, and hydrogen bonding. Additionally, biochar facilitates various degradation pathways including Fenton reactions, photocatalytic, persulfate oxidations, and biodegradation predominantly through radical (such as SO4-, OH, and O2-) as well as non-radical (such as 1O2 and electrons transfer) processes. This study emphasizes the dynamics of interaction between biochar surfaces and NNIs during adsorption and degradation aiming to elucidate mechanistic pathways involved as well as assess the overall efficacy of biochar in NNI removal. By comparing the identification of degradation products and degradation pathways, the necessity of advanced oxidation process is confirmed. This review highlights the significance of harnessing biochar's potential for mitigating NNI pollution through future application-oriented research and development endeavors, while simultaneously ensuring environmental integrity and promoting sustainable practices.


Assuntos
Carvão Vegetal , Inseticidas , Neonicotinoides , Poluentes Químicos da Água , Carvão Vegetal/química , Inseticidas/análise , Inseticidas/química , Poluentes Químicos da Água/análise , Adsorção
3.
Mol Plant ; 17(6): 935-954, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38720462

RESUMO

N6-Methyladenosine (m6A) is one of the most abundant modifications of eukaryotic mRNA, but its comprehensive biological functionality remains further exploration. In this study, we identified and characterized a new flowering-promoting gene, EARLY HEADING DATE6 (EHD6), in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both m6A-modified RNA and unmodified RNA indiscriminately. We found that EHD6 can physically interact with YTH07, a YTH (YT521-B homology) domain-containing m6A reader. We showed that their interaction enhances the binding of an m6A-modified RNA and triggers relocation of a portion of YTH07 from the cytoplasm into RNP granules through phase-separated condensation. Within these condensates, the mRNA of a rice flowering repressor, CONSTANS-like 4 (OsCOL4), becomes sequestered, leading to a reduction in its protein abundance and thus accelerated flowering through the Early heading date 1 pathway. Taken together, these results not only shed new light on the molecular mechanism of efficient m6A recognition by the collaboration between an RNA binding protein and YTH family m6A reader, but also uncover the potential for m6A-mediated translation regulation through phase-separated ribonucleoprotein condensation in rice.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , RNA Mensageiro , Proteínas de Ligação a RNA , Ribonucleoproteínas , Oryza/metabolismo , Oryza/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/metabolismo , Flores/crescimento & desenvolvimento , Flores/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo
4.
ACS Nano ; 18(22): 14595-14604, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758185

RESUMO

Defect engineering and nitrogen doping being effective strategies for modulating the surface chemical state of the carbon matrix have been widely explored to promote the catalytic activity in the territory of electrochemical energy storage and conversion devices. However, the controllable synthesis of carbon material with high-density specific defects and high nitrogen doping is still full of challenges. Here, we first synthesize one-dimensional necklace-like nitrogen-doped carbon nanochains (N-CNCs) with abundant defects on carbon fiber paper (CFP) by chemical vapor deposition (CVD) method. The resultant nanostructures are a bunch of interconnected carbon spheres with a hollow structure at the internode and present the complete one-dimensional nanochain configuration. Specifically, the N-CNCs with a corrugated surface possesses high content of sp3 defects (31.2%) and nitrogen (23.6 at %). Combining finite element analysis and experimental results, it reveals that the robust shear field generated by etching gas releasing from thermal decomposition of melamine in situ modulates the CVD process via changing the size and force environment of the metal catalyst droplets for formation of N-CNCs. Benefiting from the high ratio of sp3/sp2 and nitrogen doped on the surface, the N-CNCs@CFP displays a superior electrocatalytic performance for CO2RR, delivering CO Faradaic efficiency of 95.9% and a current density of 23.2 mA cm-2 at -0.86 V vs RHE. This work provides promising synthesis strategy and some inspirations for construction of ultradense and specific defects coupling with nitrogen doping sites into carbon materials to achieve high-efficiency electrocatalysis applications.

5.
J Environ Manage ; 360: 121196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763117

RESUMO

At present, biochar has a large application potential in soil amelioration, pollution remediation, carbon sequestration and emission reduction, and research on the effect of biochar on soil ecology and environment has made positive progress. However, under natural and anthropogenic perturbations, biochar may undergo a series of environmental behaviors such as migratory transformation, mineralization and decomposition, and synergistic transport, thus posing certain potential risks. This paper outlines the multi-interfacial migration pathway of biochar in "air-soil-plant-animal-water", and analyzes the migration process and mechanism at different interfaces during the preparation, transportation and application of biochar. The two stages of the biochar mineralization process (mineralization of easily degradable aliphatic carbon components in the early stage and mineralization of relatively stable aromatic carbon components in the later stage) were described, the self-influencing factors and external environmental factors of biochar mineralization were analyzed, and the mineral stabilization mechanism and positive/negative excitation effects of biochar into the soil were elucidated. The proximity between field natural and artificially simulated aging of biochar were analyzed, and the change of its properties showed a trend of biological aging > chemical aging > physical aging > natural aging, and in order to improve the simulation and prediction, the artificially simulated aging party needs to be changed from a qualitative method to a quantitative method. The technical advantages, application scope and potential drawbacks of different biochar modification methods were compared, and biological modification can create new materials with enhanced environmental application. The stability performance of modified biochar was compared, indicating that raw materials, pyrolysis temperature and modification method were the key factors affecting the stability of biochar. The potential risks to the soil environment from different pollutants carried by biochar were summarized, the levels of pollutants released from biochar in the soil environment were highlighted, and a comprehensive selection of ecological risk assessment methods was suggested in terms of evaluation requirements, data acquisition and operation difficulty. Dynamic tracing of migration decomposition behavior, long-term assessment of pollution remediation effects, and directional design of modified composite biochar materials were proposed as scientific issues worthy of focused attention. The results can provide a certain reference basis for the theoretical research and technological development of biochar.


Assuntos
Carvão Vegetal , Ecossistema , Solo , Carvão Vegetal/química , Solo/química , Medição de Risco , Poluentes do Solo , Ecologia
6.
Chemosphere ; 359: 142371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768784

RESUMO

Neonicotinoid insecticides (NNIs) have caused widespread contamination of multiple environmental media and posed a serious threat to ecosystem health by accidently injuring non-target species. This study collected samples of water, soil, and rice plant tissues in a water-soil-plant system of paddy fields after spaying imidacloprid (IMI), thiamethoxam (THM), and clothianidin (CLO) to analyze their distribution characteristics and migration procedures and to assess related dietary risks of rice consumption. In the paddy water, the concentrations of NNIs showed a dynamic change of increasing and then decreasing during about a month period, and the initial deposition of NNIs showed a trend of CLO (3.08 µg/L) > THM (2.74 µg/L) > IMI (0.97 µg/L). In paddy soil, the concentrations of the three NNIs ranged from 0.57 to 68.3 ng/g, with the highest residual concentration at 2 h after application, and the concentration trend was opposite to that in paddy water. The initial deposition amounts of IMI, THM, and CLO in the root system were 5.19, 3.02, and 5.24 µg/g, respectively, showing a gradual decrease over time. In the plant, the initial deposition amounts were 19.3, 9.36, and 52.6 µg/g for IMI, THM, and CLO, respectively, exhibiting concentration trends similar to those in the roots. Except for IMI in soil, the dissipation of the NNIs conformed to the first-order kinetic equation in paddy water, soil, and plant. The results of bioconcentration factors (BCFs) and translocation factor (TF) indicated that NNIs can be bi-directionally transported in plants through leaf absorption and root uptake. The risk of NNIs intake through rice consumption was low for all age groups, with a slightly higher risk of exposure in males than in females.


Assuntos
Inseticidas , Neonicotinoides , Oryza , Poluentes do Solo , Inseticidas/análise , Neonicotinoides/análise , Oryza/química , Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental , Nitrocompostos/análise , Exposição Dietética/estatística & dados numéricos , Exposição Dietética/análise , Humanos , Medição de Risco , Tiametoxam , Guanidinas/análise , Tiazóis
7.
Chemosphere ; 357: 141983, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631501

RESUMO

Neonicotinoid insecticides (NNIs) have attracted global concern due to its extensive use in agricultural activities and their potential risks to the animal and human health, however, there is limited knowledge on the regional traits and ecological risks of NNIs in the aquatic environments. We herein investigated the occurrence of NNIs within the midsection of Yangtze River in China, offering the inaugural comprehensive report on NNIs within this region. In this study, eleven NNIs were analyzed in 108 river water and sediment samples from three seasons (normal, dry and wet season). We detected a minimum of seven NNIs in the water and four NNIs in the sediment, with total concentrations ranging from 12.33 to 100.5 ng/L in water and 0.08-5.68 ng/g in sediment. The levels of NNIs in both river water and sediment were primarily influenced by the extent of agricultural activities. The estimated annual load of NNIs within the midsection of Yangtze River totaled 40.27 tons, April was a critical contamination period. Relative potency factor (RPF) analysis of the human exposure risk revealed that infants faced the greatest exposure risk, with an estimated daily intake of 11.27 ng kg-1∙bw∙d-1. We established the acute and chronic thresholds for aquatic organisms by employing the Species Sensitive Distribution (SSD) method (acute: 384.1 ng/L; chronic: 168.9 ng/L). Based on the findings from this study, 33% of the river water samples exceeded the chronic ecological risks thresholds, indicating the urgent need for intervention programs to guarantee the safety of the river for aquatic life in the Yangtze River Basin.


Assuntos
Monitoramento Ambiental , Inseticidas , Neonicotinoides , Rios , Poluentes Químicos da Água , Rios/química , China , Inseticidas/análise , Inseticidas/toxicidade , Poluentes Químicos da Água/análise , Medição de Risco , Humanos , Neonicotinoides/análise , Animais , Sedimentos Geológicos/química , Estações do Ano , Agricultura , Análise Espaço-Temporal
8.
Front Oncol ; 14: 1305262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571504

RESUMO

Background: The preoperative inflammatory condition significantly influences the prognosis of malignancies. We aimed to investigate the potential significance of preoperative inflammatory biomarkers in forecasting the long-term results of lung carcinoma after microwave ablation (MWA). Method: This study included patients who received MWA treatment for lung carcinoma from Jan. 2012 to Dec. 2020. We collected demographic, clinical, laboratory, and outcome information. To assess the predictive capacity of inflammatory biomarkers, we utilized the area under the receiver operating characteristic curve (AUC-ROC) and assessed the predictive potential of inflammatory biomarkers in forecasting outcomes through both univariate and multivariate Cox proportional hazard analyses. Results: A total of 354 individuals underwent MWA treatment, of which 265 cases were included in this study, whose average age was 69.1 ± 9.7 years. The AUC values for the Systemic Inflammatory Response Index (SIRI) to overall survival (OS) and disease-free survival (DFS) were 0.796 and 0.716, respectively. The Cox proportional hazards model demonstrated a significant independent association between a high SIRI and a decreased overall survival (hazard ratio [HR]=2.583, P<0.001). Furthermore, a high SIRI independently correlated with a lower DFS (HR=2.391, P<0.001). We developed nomograms utilizing various independent factors to forecast the extended prognosis of patients. These nomograms exhibited AUC of 0.900, 0.849, and 0.862 for predicting 1-year, 3-year, and 5-year OS, respectively. Additionally, the AUC values for predicting 1-year, 3-year, and 5-year DFS were 0.851, 0.873, and 0.883, respectively. Conclusion: SIRI has shown promise as a valuable long-term prognostic indicator for forecasting the outcomes of lung carcinoma patients following MWA.

9.
Arch Gerontol Geriatr ; 123: 105412, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38513381

RESUMO

BACKGROUND: Observational studies suggest an association between sarcopenia-related traits and brain aging, but whether this association reflects a causal relationship remains unclear. This study aims to employ Mendelian randomization (MR) methods to investigate the causal impact of sarcopenia-related traits on brain aging. METHODS: This study presents a comprehensive analysis of genome-wide association study (GWAS) summary data associated with sarcopenia-related traits. The data were derived from a large-scale cohort, encompassing measures such as grip strength, lean body mass, and walking pace. Measurements of brain aging were obtained from neuroimaging genetics, utilizing meta-analysis (ENIGMA) to combine magnetic resonance imaging (MRI) data from 33,992 participants. The primary methodology employed in this analysis was the inverse-variance-weighted method (IVW). Additionally, sensitivity analyses were conducted, to assess heterogeneity and pleiotropy. RESULT: Appendicular lean mass(ALM) is negatively correlated with Pallidum aging; Whole body fat-free mass shows a negative correlation with Amygdala aging; Leg fat-free mass (left) and Leg fat-free mass (right) are negatively correlated with Pallidum aging; Usual walking pace is positively correlated with Nucleus Accumbens aging. Cerebellum WM aging is negatively correlated with Leg fat-free mass (left) and Leg fat-free mass (right); Hippocampus aging is negatively correlated with Hand grip strength (left) and Hand grip strength (right). Ventricles aging is positively correlated with Usual walking pace; Nucleus Accumbens aging is positively correlated with Leg fat-free mass (left) and Leg fat-free mass (right); Putamen aging is positively correlated with ALM. CONCLUSION: Our study confirms that reduced muscle mass speeds up brain aging. Walking too fast raises the risk of brain aging, while maintaining or increasing appendicular lean mass, overall muscle mass, and muscle mass in both legs lowers the risk of brain aging.


Assuntos
Envelhecimento , Encéfalo , Estudo de Associação Genômica Ampla , Força da Mão , Imageamento por Ressonância Magnética , Análise da Randomização Mendeliana , Sarcopenia , Humanos , Sarcopenia/genética , Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Força da Mão/fisiologia , Masculino , Idoso , Feminino , Músculo Esquelético/diagnóstico por imagem , Velocidade de Caminhada , Pessoa de Meia-Idade
10.
Front Genet ; 15: 1365596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525244

RESUMO

Objective: This study aims to clarify the incidence rate of temporomandibular joint disease in patients with mental disorders. Methods: Data extracted from the Psychiatric Genomics Consortium and FinnGen databases employed the Mendelian Randomization (MR) method to assess the associations of three neurodevelopmental disorders (NDDs)-Attention-Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and Tourette's Disorder (TD)-as exposure factors with Temporomandibular Disorder (TMD). The analysis used a two-sample MR design, employing the Inverse Variance Weighted (IVW) method to evaluate the relationships between these disorders and Temporomandibular Disorder. Sensitivity analysis and heterogeneity assessments were conducted. Potential confounding factors like low birth weight, childhood obesity, and body mass index were controlled for. Results: The study found that ADHD significantly increased the risks for TMD (OR = 1.2342, 95%CI (1.1448-1.3307), p < 0.00001), TMD (including avohilmo) (OR = 1.1244, 95%CI (1.0643-1.1880), p = 0.00003), TMD-related pain (OR = 1.1590, 95%CI (1.0964-1.2252), p < 0.00001), and TMD-related muscular pain associated with fibromyalgia (OR = 1.1815, 95%CI (1.1133-1.2538), p < 0.00001), while other disorders did not show significant causal relationships. Conclusion: This study reveals the elevated risk of various TMD aspects due to ADHD. Furthermore, we discuss the link between low vitamin D levels ADHD and TMD. Future research should address these limitations and delve further into the complex interactions between ADHD, ASD, TD, and TMD.

11.
Int Immunopharmacol ; 130: 111681, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38368771

RESUMO

Immunotherapy resistance conducts the main reason for failure of PD-1-based immune checkpoint inhibitors (ICIs) in patients with hepatocellular carcinoma (HCC). This study aims to clarify the mechanism of nature kill cells (NK) depletion in immunotherapy resistance of HCC. Cancerous /paracancerous tissues and peripheral blood (PB) of 55 HCC patients were collected and grouped according to differentiation degree, FCM, IHC and lymphocyte culture drug intervention experiments were used to determine NK cell depletion degree. Furthermore, a mouse model of HCC in situ was constructed and divided into different groups according to intervention measures of ICIs. Immunofluorescence thermography was used to observe changes in tumor burden. NK cells in cancerous tissues significantly up-regulated TIGIT expression (P < 0.001). Intervention experiments revealed that TIGIT and PD-1 expression decreased gradually with increased PD-1 inhibitor dose in moderately-highly differentiated patients (P < 0.05). Animal experiment showed that tumors proliferation in experimental group was inhibited after PD-1 blockage, WB indicated that ICIs decreased TIGIT and PVRL1 protein expression while increased CD226 and PVRL3 protein expression. We concluded that TIGIT+NK cells competitively bind to PVR with CD226 and promote NK cell depletion. Anti-PD-1 decreases PVRL1 expression through PD-1/PD-L1 pathway, reducing the PVR/TIGIT inhibitory signal pathway, and enhancing function of PVR/CD226 activation signal.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Nectinas , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia , Receptores Imunológicos/metabolismo
12.
Huan Jing Ke Xue ; 45(1): 275-286, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216478

RESUMO

Vegetation net primary production (NPP) is an essential index for determining the quality of terrestrial ecosystems and their potential carbon storage ability. The impacts of extreme climate events on vegetation NPP are different under different altitude gradients. However, the research on the impact of extreme climate events on the spatial variation in vegetation NPP and the coupling effects under different altitude conditions remain insufficient. Using the MOD17A3HGF remote sensing data set and RClimDex 1.9 software, the vegetation NPP and 10 extreme climate indices in the Songhua River Basin from 2001 to 2020 were calculated, respectively. The spatial and temporal evolution characteristics of vegetation NPP and its response mechanism to extreme climate events in the Songhua River Basin under different altitude gradients were analyzed by means of trend analysis, correlation analysis, regression analysis, GeoDetector, and relative importance analysis. The results showed that:① the vegetation NPP (calculated by C) in the Songhua River Basin increased significantly at the rate of 4.13 g·(m2·a)-1 from 2001 to 2020 (P < 0.01), and the rates of 3.65, 4.04, 4.70, 5.09, and 4.57 g·(m2·a)-1 at the altitude gradients of 29-255, 255-440, 440-658, 658-935, and 935-2 589 m, respectively (P < 0.01). ② The spatial distribution pattern of vegetation NPP presented "high around and low in the middle," and the fluctuation of vegetation NPP in high altitude areas was more obvious than that in low altitude areas; for example, the average value of vegetation NPP at an altitude gradient from 29 to 255 m had a lower value, whereas the other altitude gradients had higher mean values than the mean value of the basin. ③ The extreme precipitation events in the Songhua River Basin were the main influencing factors of vegetation NPP, i.e., the vegetation NPP in low-altitude areas was mainly affected by extreme precipitation events, whereas the values in high-altitude areas were affected by both extreme precipitation events and extreme temperature events. The results of this research can provide a scientific basis for improving the carbon cycle model of the terrestrial ecosystem in the Songhua River Basin, quantifying the ability of carbon storage of vegetation and formulating policies to deal with climate change.


Assuntos
Ecossistema , Rios , Mudança Climática , Temperatura , Carbono , China
13.
Transl Res ; 263: 53-72, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678757

RESUMO

Neuropathic pain is caused by injury or disease of the somatosensory system, and its course is usually chronic. Several studies have been dedicated to investigating neuropathic pain-related targets; however, little attention has been paid to the persistent alterations that these targets, some of which may be crucial to the pathophysiology of neuropathic pain. The present study aimed to identify potential targets that may play a crucial role in neuropathic pain and validate their long-term impact. Through bioinformatics analysis of RNA sequencing results, we identified Slc9a1 and validated the reduced expression of sodium-hydrogen exchanger 1 (NHE1), the protein that Slc9a1 encodes, in the spinal nerve ligation (SNL) model. Colocalization analysis revealed that NHE1 is primarily co-localized with vesicular glutamate transporter 2-positive neurons. In vitro experiments confirmed that poly(lactic-co-glycolic acid) nanoparticles loaded with siRNA successfully inhibited NHE1 in SH-SY5Y cells, lowered intracellular pH, and increased intracellular calcium concentrations. In vivo experiments showed that sustained suppression of spinal NHE1 expression by siRNA-loaded nanoparticles resulted in delayed hyperalgesia in naïve and SNL model rats, whereas amiloride-induced transient suppression of NHE1 expression yielded no significant changes in pain sensitivity. We identified Slc9a1, which encodes NHE1, as a key gene in neuropathic pain. Utilizing the sustained release properties of nanoparticles enabled us to elucidate the chronic role of decreased NHE1 expression, establishing its significance in the mechanisms of neuropathic pain.


Assuntos
Neuralgia , Neuroblastoma , Ratos , Humanos , Animais , Trocador 1 de Sódio-Hidrogênio/genética , Trocador 1 de Sódio-Hidrogênio/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Glicóis , Preparações de Ação Retardada , RNA Interferente Pequeno/genética
14.
Chemosphere ; 349: 140886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38065265

RESUMO

Snowpack, which serves as a natural archive of atmospheric deposition of multiple pollutants, is a practical environmental media that can be used for assessing atmospheric records and input of the pollutants to the surface environments and ecosystems. A total of 29 snowpack samples were collected at 20 sampling sites covering three different functional areas of a major city (Harbin) in Northeast China. Two samples at the "snow layer" and one or two samples at the "particulate layer" were collected at each sampling site in the industrial areas characterized by multi-layer snowpack, and only one sample at the "snow layer" was collected at each sampling site in the cultural and recreational as well as agricultural areas. The snow contents of 31 elements (Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Y, Cd, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb) and six major water-soluble inorganic ions (WSIIs, NH4+, K+, Ca2+, NO2-, NO3-, and SO42-) were analyzed. The total mass of the measured elements is dominated (95.8%-99.2%) by crustal elements. Heavy metals only account for 0.77%-4.07% of the total mass of the elements, but are occasionally close to or even above the standard limit in the "Environmental Quality Standards for Surface Water" of China (GB3838-2002). SO42- and Ca2+ are the main anion and cation, accounting for 34.9%-81.1% and 1.43%-29.9%, respectively, of the measured total ions. Total atmospheric deposition of crustal elements and heavy metals is dominated by wet deposition in areas near the petrochemical plant and by dry deposition in areas near the cement plant. Coal combustion, industrial emissions, and traffic-related activities lead to the enrichment of heavy metals in the snowpacks of urban and suburban areas, while coal combustion and biomass burning contribute to pollution in rural areas. The cities and regions situated in the western, northwestern, northern, and northeastern directions from Harbin are potential source regions of these pollutant species.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Metais Pesados , Ecossistema , Poeira/análise , China , Poluentes Atmosféricos/análise , Metais Pesados/análise , Cidades , Íons/análise , Carvão Mineral/análise , Água , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
15.
Plant Biotechnol J ; 22(3): 751-758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37932934

RESUMO

Heading date (or flowering time) is a key agronomic trait that affects seasonal and regional adaption of rice cultivars. An unoptimized heading date can either not achieve a high yield or has a high risk of encountering abiotic stresses. There is a strong demand on the mild to moderate adjusting the heading date in breeding practice. Genome editing is a promising method which allows more precise and faster changing the heading date of rice. However, direct knock out of major genes involved in regulating heading date will not always achieve a new germplasm with expected heading date. It is still challenging to quantitatively adjust the heading date of elite cultivars with best adaption for broader region. In this study, we used a CRISPR-Cas9 based genome editing strategy called high-efficiency multiplex promoter-targeting (HMP) to generate novel alleles at cis-regulatory regions of three major heading date genes: Hd1, Ghd7 and DTH8. We achieved a series of germplasm with quantitative variations of heading date by editing promoter regions and adjusting the expression levels of these genes. We performed field trials to screen for the best adapted lines for different regions. We successfully expanded an elite cultivar Ningjing8 (NJ8) to a higher latitude region by selecting a line with a mild early heading phenotype that escaped from cold stress and achieved high yield potential. Our study demonstrates that HMP is a powerful tool for quantitatively regulating rice heading date and expanding elite cultivars to broader regions.


Assuntos
Oryza , Oryza/metabolismo , Locos de Características Quantitativas , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética
17.
Environ Res ; 239(Pt 2): 117412, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839535

RESUMO

Bioaccumulation factor (BAF) of pollutants is an important parameter for evaluating their bioaccumulation potential and an important indicator for evaluating their environmental risks. However, little study exits on the BAF of novel brominated flame retardants (NBFRs). The present study determined 17 NBFRs in 24 water samples in dissolved phase and 93 crucian carp samples collected from an electronic waste recycling site in northern China, in order to examine their contamination, distribution and bioaccumulation. The results showed that the targeted NBFRs were widely detectable in the dissolved phase and crucian carps. In dissolved phase, allyl 2,4,6-tribromophenyl ether (ATE) had the highest detectable rate (100%) and concentration (mean: 1.3 ± 0.62 ng/L), but in crucian carp, hexachlorocyclopentenyl-dibromocyclooctane (HCDBCO) was the one with the highest detectable rate (89%) and concentration (mean: 16 ± 9.2 ng/g wet weight (ww)) among all 17 NBFRs. The discharge and water solubility of NBFRs determined their concentration in the dissolved phase, while the concentration of NBFRs in crucian carp was the results of their discharge and food exposure. The estimated BAFs exceeded 5000 L/kg for petabromoethylbenzene (PBEB), pentabromotoluene (PBT), HCDBCO, pentabromobenzyl acrylate (PBBA), 1,2,3,4,5-pentabromobenzene (PBBZ), 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE), hexabromobenzene (HBBZ), and α-1,2,5,6-tetrabromocyclooctane (α-TBCO), suggesting that these compounds were above the hazard standard of bioaccumulation. Although the BAFs of 2,3,5,6-tetrabromo-p-xylene (p-TBX), 1,2-bis(2,4,6-tribromophenoxy)-ethane (BTBPE), α-/ß-tetrabromoethylcyclohexane (α-/ß-TBECH) and ATE were less than 5000, the potential of bioaccumulation cannot be ignored. The log BAF of tested NBFRs showed a pattern of first increasing and then decreasing with the increase of log KOW, the water solubility of NBFRs, the exposure to fish, the uptake and depuration of fish were the key factor to this pattern. To our knowledge, the BAF values of the most of NBFRs calculated in this study were not reported in the published work previously.


Assuntos
Carpas , Resíduo Eletrônico , Retardadores de Chama , Animais , Carpa Dourada , Retardadores de Chama/análise , Bioacumulação , Monitoramento Ambiental/métodos , Éteres Difenil Halogenados/análise , Água
18.
BMC Cancer ; 23(1): 601, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37386391

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a malignancy characterized by challenging early diagnosis and poor prognosis. It is believed that coagulation has an impact on the tumor microenvironment of PDAC. The aim of this study is to further distinguish coagulation-related genes and investigate immune infiltration in PDAC. METHODS: We gathered two subtypes of coagulation-related genes from the KEGG database, and acquired transcriptome sequencing data and clinical information on PDAC from The Cancer Genome Atlas (TCGA) database. Using an unsupervised clustering method, we categorized patients into distinct clusters. We investigated the mutation frequency to explore genomic features and performed enrichment analysis, utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes (KEGG) to explore pathways. CIBERSORT was used to analyze the relationship between tumor immune infiltration and the two clusters. A prognostic model was created for risk stratification, and a nomogram was established to assist in determining the risk score. The response to immunotherapy was assessed using the IMvigor210 cohort. Finally, PDAC patients were recruited, and experimental samples were collected to validate the infiltration of neutrophils using immunohistochemistry. In addition, and identify the ITGA2 expression and function were identified by analyzing single cell sequencing data. RESULTS: Two coagulation-related clusters were established based on the coagulation pathways present in PDAC patients. Functional enrichment analysis revealed different pathways in the two clusters. Approximately 49.4% of PDAC patients experienced DNA mutation in coagulation-related genes. Patients in the two clusters displayed significant differences in terms of immune cell infiltration, immune checkpoint, tumor microenvironment and TMB. We developed a 4-gene prognostic stratified model through LASSO analysis. Based on the risk score, the nomogram can accurately predict the prognosis in PDAC patients. We identified ITGA2 as a hub gene, which linked to poor overall survival (OS) and short disease-free survival (DFS). Single-cell sequencing analysis demonstrated that ITGA2 was expressed by ductal cells in PDAC. CONCLUSIONS: Our study demonstrated the correlation between coagulation-related genes and the tumor immune microenvironment. The stratified model can predict the prognosis and calculate the benefits of drug therapy, thus providing the recommendations for clinical personalized treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Microambiente Tumoral/genética , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/genética , Prognóstico , Neoplasias Pancreáticas
19.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1235-1243, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236940

RESUMO

Through symbiosis with plants, arbuscular mycorrhizal (AM) fungi effectively improve the availability of soil nitrogen (N). However, the mechanism through which AM and associated extraradical mycelium affect soil N mineralization remains unknow. We carried out an in situ soil culture experiment by using in-growth cores in plantations of three subtropical tree species, Cunninghamia lanceolata, Schima superba, and Liquidambar formosana. We measured soil physical and chemical properties, net N mineralization rate, and the activities of four kinds of hydrolase (leucine aminopeptidase (LAP), ß-1,4-N-acetylglucosaminidase (NAG), ß-1,4-glucosidase (ßG), cellobiohydrolase (CB)) and two kinds of oxidases (polyphenol oxidase (POX) and peroxidase (PER)) involved in soil organic matter (SOM) mineralization in treatments of mycorrhiza (with absorbing roots and hyphae), hyphae (hyphae only), and control (mycorrhiza-free). The results showed that mycorrhizal treatments significantly affected soil total carbon and pH but did not affect N mineralization rates and all enzymatic activities. Tree species significantly affected net ammonification rate, net N mineralization rate and activities of NAG, ßG, CB, POX and PER. The net N mineralization rate and enzyme activities in the C. lanceolata stand were significantly higher than that in monoculture broad-leaved stands of either S. superba or L. formosana. There was no interactive effect of mycorrhizal treatment and tree species on any of soil properties, nor on enzymatic activities or net N mineralization rates. Soil pH was negatively and significantly correlated with five kinds of enzymatic activities except for LAP, while net N mineralization rate significantly correlated with ammonium nitrogen content, available phosphorus content, and the activity level of ßG, CB, POX, and PER. In conclusion, there was no difference in enzymatic activities and N mineralization rates between rhizosphere and hyphosphere soils of three subtropical tree species in the whole growing season. The activity of particular carbon cycle-related enzymes was closely related to soil N mineralization rate. It is suggested that differences in litter quality and root functional traits among different tree species affect soil enzyme activities and N mineralization rates through organic matter inputs and shaping soil condition.


Assuntos
Micorrizas , Árvores , Solo/química , Nitrogênio , Micélio , Oxirredutases , Microbiologia do Solo , Raízes de Plantas/microbiologia , Carbono
20.
Front Surg ; 10: 1087327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206346

RESUMO

Background: The purpose was aimed to evaluate the safety and effectiveness of cholecystic duct plasty (CDP) and biliary reconstruction techniques preventing biliary complications following orthotopic liver transplantation (OLT) first proposed by our center. Methods: 127 enrolled patients who underwent LT in our center from January 2015 to December 2019 were analyzed retrospectively. According to the mode of biliary tract reconstruction, patients were divided into CDP group (Group 1, n = 53) and control group (Group 2, n = 74). The differences of perioperative general data, biliary complications and long-term prognosis between two groups were compared and analyzed. Results: All patients completed the operation successfully, the incidence of perioperative complications was 22.8%. There was no significant difference in perioperative general data and complications between the two groups. Follow-up ended in June 2020, with a median follow-up period of 31 months. During the follow-up period, biliary complications occurred in 26 patients, with an overall incidence of 20.5%. The overall incidence of biliary complications and anastomotic stenosis in Group 1 was lower than that in Group 2 (P < 0.05). There was no significant difference in overall prognosis between the two groups (P = 0.274), however, the cumulative incidence of biliary complications in Group 1 was lower than that in Group 2 (P = 0.035). Conclusion: Reconstruction of common bile duct by CDP represents considerable safety and practicability, particularly for patients with small diameter of common bile duct or wide discrepancy of bile duct size between donor and recipient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA