Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 62017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28362258

RESUMO

We describe a regulatory mechanism that controls the activity of retromer, an evolutionarily conserved sorting device that orchestrates cargo export from the endosome. A spontaneously arising mutation that activates the yeast (Saccharomyces cerevisiae) CDC25 family phosphatase, Mih1, results in accelerated turnover of a subset of endocytosed plasma membrane proteins due to deficient sorting into a retromer-mediated recycling pathway. Mih1 directly modulates the phosphorylation state of the Vps26 retromer subunit; mutations engineered to mimic these states modulate the binding affinities of Vps26 for a retromer cargo, resulting in corresponding changes in cargo sorting at the endosome. The results suggest that a phosphorylation-based gating mechanism controls cargo selection by yeast retromer, and they establish a functional precedent for CDC25 protein phosphatases that lies outside of their canonical role in regulating cell cycle progression.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Fosfoproteínas Fosfatases/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , ras-GRF1/metabolismo , Mutação de Sentido Incorreto , Fosforilação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/genética , ras-GRF1/genética
2.
J Biol Chem ; 289(9): 6133-41, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24421313

RESUMO

Yeast cells deficient in the Rieske iron-sulfur subunit (Rip1) of ubiquinol-cytochrome c reductase (bc1) accumulate a late core assembly intermediate, which weakly associates with cytochrome oxidase (CcO) in a respiratory supercomplex. Expression of the N-terminal half of Rip1, which lacks the C-terminal FeS-containing globular domain (designated N-Rip1), results in a marked stabilization of trimeric and tetrameric bc1-CcO supercomplexes. Another bc1 mutant (qcr9Δ) stalled at the same assembly intermediate is likewise converted to stable supercomplex species by the expression of N-Rip1, but not by expression of intact Rip1. The N-Rip1-induced stabilization of bc1-CcO supercomplexes is independent of the Bcs1 translocase, which mediates Rip1 translocation during bc1 biogenesis. N-Rip1 induces the stabilization of bc1-CcO supercomplexes through an enhanced formation of CcO. The association of N-Rip1 with the late core bc1 assembly intermediate appears to confer stabilization of a CcO assembly intermediate. This induced stabilization of CcO is dependent on the Rcf1 supercomplex stabilization factor and only partially dependent on the presence of cardiolipin. N-Rip1 exerts a related induction of CcO stabilization in WT yeast, resulting in enhanced respiration. Additionally, the impact of CcO stabilization on supercomplexes was observed by means other than expression of N-Rip1 (via overexpression of CcO subunits Cox4 and Cox5a), demonstrating that this is a general phenomenon. This study presents the first evidence showing that supercomplexes can be stabilized by the stimulated formation of CcO.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Estabilidade Enzimática/fisiologia , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Cell Biol ; 32(21): 4400-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22927643

RESUMO

The final step in the assembly of the ubiquinol-cytochrome c reductase or bc(1) complex involves the insertion of the Rieske Fe/S cluster protein, Rip1. Maturation of Rip1 occurs within the mitochondrial matrix prior to its translocation across the inner membrane (IM) in a process mediated by the Bcs1 ATPase and subsequent insertion into the bc(1) complex. Here we show that the matrix protein Mzm1 functions as a Rip1 chaperone, stabilizing Rip1 prior to the translocation step. In the absence of Mzm1, Rip1 is prone to either proteolytic degradation or temperature-induced aggregation. A series of Rip1 truncations were engineered to probe motifs necessary for Mzm1 interaction and Bcs1-mediated translocation of Rip1. The Mzm1 interaction with Rip1 persists in Rip1 variants lacking its transmembrane domain or containing only its C-terminal globular Fe/S domain. Replacement of the globular domain of Rip1 with that of the heterologous folded protein Grx3 abrogated Mzm1 interaction; however, appending the C-terminal 30 residues of Rip1 to the Rip1-Grx3 chimera restored Mzm1 interaction. The Rip1-Grx3 chimera and a Rip1 truncation containing only the N-terminal 92 residues each induced stabilization of the bc(1):cytochrome oxidase supercomplex in a Bcs1-dependent manner. However, the Rip1 variants were not stably associated with the supercomplex. The induced supercomplex stabilization by the Rip1 N terminus was independent of Mzm1.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Complexo III da Cadeia de Transporte de Elétrons/biossíntese , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico
4.
Mol Cell Biol ; 31(19): 3988-96, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21807901

RESUMO

The assembly of the cytochrome bc(1) complex in Saccharomyces cerevisiae is shown to be conditionally dependent on a novel factor, Mzm1. Cells lacking Mzm1 exhibit a modest bc(1) defect at 30°C, but the defect is exacerbated at elevated temperatures. Formation of bc(1) is stalled in mzm1Δ cells at a late assembly intermediate lacking the Rieske iron-sulfur protein Rip1. Rip1 levels are markedly attenuated in mzm1Δ cells at elevated temperatures. Respiratory growth can be restored in the mutant cells by the overexpression of the Rip1 subunit. Elevated levels of Mzm1 enhance the stabilization of Rip1 through physical interaction, suggesting that Mzm1 may be an important Rip1 chaperone especially under heat stress. Mzm1 may function primarily to stabilize Rip1 prior to inner membrane (IM) insertion or alternatively to aid in the presentation of Rip1 to the inner membrane translocation complex for extrusion of the folded domain containing the iron-sulfur center.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Sequência de Aminoácidos , Animais , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Proteínas Mitocondriais/genética , Modelos Moleculares , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética
5.
FEBS Lett ; 584(4): 652-6, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20051244

RESUMO

The length of the isoprenoid-side chain in ubiquinone, an essential component of the electron transport chain, is defined by poly-prenyl diphosphate synthase, which comprises either homomers (e.g., IspB in Escherichia coli) or heteromers (e.g., decaprenyl diphosphate synthase (Dps1) and D-less polyprenyl diphosphate synthase (Dlp1) in Schizosaccharomyces pombe and in humans). We found that expression of either dlp1 or dps1 recovered the thermo-sensitive growth of an E. coli ispB(R321A) mutant and restored IspB activity and production of Coenzyme Q-8. IspB interacted with Dlp1 (or Dps1), forming a high-molecular weight complex that stabilized IspB, leading to full functionality.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Animais , Divisão Celular , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Temperatura Alta , Humanos , Immunoblotting , Camundongos , Peso Molecular , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mutação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquinona/metabolismo
6.
FEBS J ; 276(3): 748-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19120452

RESUMO

It has been widely accepted that most coenzyme Q (CoQ) exists freely in the mitochondrial membrane as a CoQ pool. However, the recent identification of a mitochondrial CoQ-binding protein, termed Coq10, in budding yeast has the potential to change our current view of CoQ status in membranes. Here, we studied the counterpart of budding yeast Coq10 (also termed Coq10) in fission yeast. Fission yeast coq10 null mutants exhibited a similar, but less severe, phenotype to CoQ-deficient fission yeast, including the requirement for antioxidants for proper growth on minimal medium, increased sensitivity to H(2)O(2), high levels of H(2)S production, and a deficiency in respiration. The coq10 null mutant produced nearly normal levels of CoQ10, suggesting that coq10 does not belong to the group of CoQ biosynthetic genes. To elucidate the role of Coq10, we expressed recombinant coq10 in Escherichia coli, and found that CoQ8 was present in purified recombinant Coq10. Mutational analysis of 13 conserved residues of Coq10 revealed that two hydrophobic amino acid residues, leucine 63 (L63) and tryptophan 104 (W104), play an important role in Coq10 binding to CoQ. An L63A/W104A double mutant of Coq10 exhibited lower CoQ-binding activity than either of the single mutants, and was unable to complement the coq10 deletion in fission yeast. A human Coq10 ortholog was able to functionally compensate for the absence of coq10 in fission yeast, suggesting that Coq10 is important for proper respiration in a variety of organisms.


Assuntos
Mitocôndrias/metabolismo , Consumo de Oxigênio , Schizosaccharomyces/metabolismo , Ubiquinona/análogos & derivados , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Expressão Gênica , Humanos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ligação Proteica , Schizosaccharomyces/química , Schizosaccharomyces/genética , Alinhamento de Sequência , Especificidade por Substrato , Ubiquinona/química , Ubiquinona/genética , Ubiquinona/isolamento & purificação , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA