Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(10): eadn3485, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457509

RESUMO

Self-assembly of nanoparticles by means of interparticle optical forces provides a compelling approach toward contact-free organization and manipulation of nanoscale entities. However, exploration of the rotational degrees of freedom in this process has remained limited, primarily because of the predominant focus on spherical nanoparticles, for which individual particle orientation cannot be determined. Here, we show that gold nanorods, which self-assemble in water under the influence of circularly polarized light, exhibit synchronized rotational motion at kilohertz frequencies. The synchronization is caused by strong optical interactions and occurs despite the presence of thermal diffusion. Our findings elucidate the intricate dynamics arising from the transfer of photon spin angular momentum to optically bound matter and hold promise for advancing the emerging field of light-driven nanomachinery.

2.
Adv Mater ; 36(9): e2309143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37944998

RESUMO

Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.

3.
Chem Rev ; 123(11): 6891-6952, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37133878

RESUMO

All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.

4.
Opt Express ; 30(24): 43371-43383, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36523036

RESUMO

Understanding and mastering the light-light and light-matter interactions in coupled structures have become significant subjects, as they provide versatile tools for manipulating light in both classical and quantum regimes. Mimicking quantum interference effects in pure photonic nanostructures, from weak Fano dip to intense electromagnetically induced transparency, usually requires strong asymmetries in complex geometries and larger interactions between resonances, i.e., in the intermediate coupling regime. Here, we numerically demonstrate a simple and chemically feasible plasmonic nanocube-hexagonal-nanoplate heterodimer with a strong, tunable self-induced transparency window created by the intermediate coupling between the near-degenerate dark and bright hybridized modes. Further assisted by the strong coupling introduced by the J-aggregate excitons covering the heterodimer, three evident exciton-induced transparency windows were observed. These multiband transparencies in a single-particle-level subwavelength configuration, could on one hand enrich the toolbox of multi-frequency light filtering, slowing and switching beyond the diffraction limit, and on the other hand, work as a fundamental testbed for investigating multiscale light-matter interactions at the nanoscale.

5.
Comput Intell Neurosci ; 2022: 5191871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017458

RESUMO

In this day and age, the necessities for route and situating exactness are getting ever more elevated. The global positioning and navigation system (GPS) can give high-accuracy and long haul route and situating data. But it largely depends on the external environment and is susceptible to environmental disturbances. As a result, the number of visible stars is insufficient, and even placement fails. The research on node positioning technology is of great significance to the research of wireless sensor networks, and node positioning technology is one of the important technologies in wireless sensor networks. Therefore, this paper will introduce the relevant algorithms and technologies of positioning in detail. The purpose of this text is to research how to analyze and research based on Internet of things (IoT) satellite navigation and positioning technology. And the wireless sensor network is described. The two simulation results have showed that, with the positioning technology proposed in this paper, the average positioning error of the anchor node can be kept a small constant regardless of the conditions of different packet sending intervals, changing moving rates, or increasing the transmission power and changing distance. The average positioning error provided in this paper has been kept at about 0.80 m, and the positioning accuracy is high, which is naturally newer and better than the Ssu positioning technology.

6.
Sci Adv ; 8(4): eabl4385, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35080976

RESUMO

Chirality, as a concept, is well understood at most length scales. However, quantitative models predicting the efficacy of the transmission of chirality across length scales are lacking. We propose here a modus operandi for a chiral nanoshape solute in an achiral nematic liquid crystal host showing that that chirality transfer may be understood by unusually simple geometric considerations. This mechanism is based on the product of a pseudoscalar chirality indicator and of a geometric shape compatibility factor based on the two-dimensional isoperimetric quotients for each nanoshape solute. The model is tested on an experimental set of precisely engineered gold nanoshapes. These libraries of calculated and in-parallel acquired experimental data among related nanoshapes pave the way for predictive calculations of chirality transfer in nanoscale, macromolecular, and biological systems, from designing chiral discriminators and enantioselective catalysts to developing chiral metamaterials and understanding nature's innate ability to transfer homochirality across length scales.

7.
Sensors (Basel) ; 21(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34833637

RESUMO

Economic globalization is developing more rapidly than ever before. At the same time, economic growth is accompanied by energy consumption and carbon emissions, so it is particularly important to estimate, analyze and evaluate the economy accurately. We compared different nighttime light (NTL) index models with various constraint conditions and analyzed their relationships with economic parameters by linear correlation. In this study, three indices were selected, including original NTL, improved impervious surface index (IISI) and vegetation highlights nighttime-light index (VHNI). In the meantime, all indices were built in a linear regression relationship with gross domestic product (GDP), employed population and power consumption in southeast China. In addition, the correlation coefficient R2 was used to represent fitting degree. Overall, comparing the regression relationships with GDP of the three indices, VHNI performed best with the value of R2 at 0.8632. For the employed population and power consumption regression with these three indices, the maximum R2 of VHNI are 0.8647 and 0.7824 respectively, which are also the best performances in the three indices. For each individual province, the VHNI perform better than NTL and IISI in GDP regression, too. When taking employment population as the regression object, VHNI performs best in Zhejiang and Anhui provinces, but not all provinces. Finally, for power consumption regression, the value of VHNI R2 is better than NTL and IISI in every province except Hainan. The results show that, among the indices under different constraint conditions, the linear relationships between VHNI and GDP and power consumption are the strongest under vegetation constraint in southeast China. Therefore, VHNI index can be used for fitting analysis and prediction of economy and power consumption in the future.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , China , Fenômenos Físicos , Análise de Regressão
8.
Biosens Bioelectron ; 192: 113539, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34365287

RESUMO

Caspase-3 and hydrogen peroxide (H2O2) are closely associated with numerous diseases, both of them are vital in different physiological and pathological conditions. They are closely related and also can act independently. The selective and accurate determination of caspase-3 and H2O2 simultaneously to determine their state of being in different situations is of great significance for further study of their molecular mechanisms and the elucidation of their biological functions. In our latest research, a AuNPL-crown nanoprobe was obtained by attaching (4-aminosulfonylphenyl) boronic acid (4-APBA) and peptide-FITC (NH2-Asp-Glu-Val-Asp (DEVD)-FITC) to gold nanoplates (AuNPLs). The fabricated AuNPL-crown nanoprobe was used for dual-channel and real-time tracking of the dynamic changes in caspase-3 and H2O2 based on fluorescence resonance energy transfer (FRET)/surface-enhanced Raman spectroscopy (SERS) technology. The AuNPL-crown nanoprobe not only provides synergy but can also achieve noninterference, making the results more reliable and repeatable. This study simultaneously traced the dynamic changes of caspase-3 and H2O2 on a single probe, which provides a potential new platform for the analysis of caspase-3 and H2O2 in the biological environment with high accuracy, sensitivity, convenience, and efficiency. In summary, we develop a new strategy for the simultaneous detection of different substances on a single probe.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Caspase 3 , Transferência Ressonante de Energia de Fluorescência , Ouro , Peróxido de Hidrogênio , Análise Espectral Raman
9.
Sensors (Basel) ; 21(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206938

RESUMO

At present, GNSS (Global Navigation Satellite System) positioning technology is widely used for outdoor positioning services because of its high-precision positioning characteristics. However, in indoor environments, effective position information cannot be provided, because of the signals being obscured. In order to improve the accuracy and continuity of indoor positioning systems, in this paper, we propose a PDR/UWB (Pedestrian Dead Reckoning and Ultra Wide Band) integrated navigation algorithm based on an adaptively robust EKF (Extended Kalman Filter) to address the problem of error accumulation in the PDR algorithm and gross errors in the location results of the UWB in non-line-of-sight scenarios. First, the basic principles of UWB and PDR location algorithms are given. Then, we propose a loose combination of the PDR and UWB algorithms by using the adaptively robust EKF. By using the robust factor to adjust the weight of the observation value to resist the influence of the gross error, and by adjusting the variance of the system adaptively according to the positioning scene, the algorithm can improve the robustness and heading factor of the PDR algorithm, which is constrained by indoor maps. Finally, the effectiveness of the algorithm is verified by the measured data. The experimental results showed that the algorithm can not only reduce the accumulation of PDR errors, but can also resist the influence of gross location errors under non-line-of-sight UWB scenarios.

10.
Huan Jing Ke Xue ; 41(6): 2617-2624, 2020 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608776

RESUMO

Considering the Yangtze River Delta as the research region, the applicability of the Terra-MODIS C061 deep blue algorithm (DB) AOD products was evaluated using Aerosol Robotic Network (AERONET) ground-based observations. The results demonstrated that the correlation between Terra-MODIS C061 deep blue algorithm (DB) aerosol optical depth (AOD) and AERONET AOD was high (0.95). Characteristics of spatial distribution and temporal variation of AOD and Angström exponent (AE) from 2000 to 2018 in the study area were analyzed using MOD04_L2 products from 2000 to 2018. The results showed that the AOD in the Yangtze River Delta was distributed as "eastern and northern plains high and southern and western mountains low". The AE showed a "northern low and south high" pattern. In terms of temporal distribution, from 2003 to 2007, the annual average AOD increased significantly, with a growth rate of 23%. After 2011, the AOD showed a downward trend. From 2001 to 2003, the annual average of AE rapidly increased, while after 2012, the AE decreased gradually. The AOD showed obvious seasonal changes in the Yangtze River Delta region, with high values in summer and low values in winter. The highest AOD was observed in June (0.84) in all monthly averages, while the lowest was observed in August (0.40). The seasonal average AE was high in autumn and low in spring. The highest AE of 1.47 was observed in September in all monthly averages, and the lowest of 1.08 was observed in March. Aerosol types in the Yangtze River Delta region were investigated according to the relationship between AOD and AE. The results suggested that the urban industrial aerosol was the main aerosol type in the region, followed by mixed type and clean continental aerosols.

11.
Nanoscale ; 12(3): 1975-1984, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31912072

RESUMO

Plasmonic Fano resonance has attracted extensive attention due to its many applications, including plasmonic sensing, electromagnetically induced transparency, light trapping and stopping, due to its narrow linewidth and asymmetric spectral shape. However, many metal nanostructures are designed with complex geometries to generate Fano resonance and few of them can support a deep Fano dip. Herein we report on the strengthening of the Fano resonance on silicon-supported Au nanoplates through the formation of (Au nanosphere)-(Au nanoplate) heterodimers. The deposition of the Au nanosphere on the top can greatly strengthen the substrate-induced Fano resonance of the Au nanoplate with a deep dip. We also observe that the replacement of the Au nanosphere with a Au nanocube can suppress the excitation of the Fano resonance in the heterodimer. When the sharp corners and edges of the nanocubes gradually become rounded, the Fano resonance appears again with increasing asymmetry. Both the dip depth and wavelength of the Fano resonance can be independently tailored by varying the nanosphere diameter and the nanoplate thickness, respectively. We believe that our results provide an attractive and facile platform for modulating Fano dips and constructing Fano resonance-based devices.

12.
Chem Sci ; 11(12): 3198-3207, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-34122825

RESUMO

Metal nanoframes, especially ultrathin ones, with excellent plasmonic properties are synthetically interesting and highly attractive. Herein we report on the synthesis of Au nanobipyramid-embedded ultrathin metal nanoframes with one of the plasmon modes very similar to that of the Au nanobipyramids. The synthesis is mediated by silver coating on Au nanobipyramids. The excellent plasmonic properties of the Au nanobipyramid-embedded ultrathin metal nanoframes are ascribed to the little influence of the ultrathin metal nanoframes on the Au nanobipyramids, as verified by electrodynamic simulations. The increase in the amount of the added metal atoms changes the nanostructure from the nanoframe to a nanocage shape. The method has also been successfully applied to (Au nanobipyramid)@Ag nanorods with different lengths and Au nanobipyramids with different longitudinal dipolar plasmon wavelengths, suggesting the generality of our approach. We have further shown that the Au nanobipyramid-embedded ultrathin metal nanoframes possess an excellent surface-enhanced Raman scattering and outstanding in situ reaction probing performance. Our study opens up a route for the construction of plasmonic ultrathin metal nanoframes based on Au nanobipyramids for plasmon-enabled applications.

13.
Small ; 15(35): e1902608, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31304668

RESUMO

Gold nanorings are attractive as plasmonic metal nanocrystals because they have a hollow inner cavity. Their enhanced electric field inside the ring cavity is accessible, which is highly desirable for assembling with other optical components and studying their plasmon-coupling behaviors. However, the lack of robust methods for synthesizing size-controllable and uniform Au nanorings severely impedes the study of their attractive plasmonic properties and plasmon-driven applications. Herein, an improved wet-chemistry method is reported for the synthesis of monodisperse colloidal Au nanorings. Using circular Au nanodisks with different thicknesses and diameters as templates, Au nanorings are synthesized with thicknesses varied from ≈30 to ≈50 nm and cavity sizes varied from ≈90 to ≈40 nm. The produced Au nanorings are assembled with colloidal Au nanospheres to yield Au nanoring-nanosphere heterodimers in sphere-in-ring and sphere-on-ring configurations on substrates. The sphere-in-ring heterodimers exhibit the interesting feature of plasmonic Fano resonance upon the excitation of the dark quadrupolar plasmon mode of the Au nanorings. The open cavity in a nanoring holds a great promise for studying plasmon-coupled systems, which will facilitate the construction of advanced metamaterials and high-performance Fano-based devices.

14.
J Food Sci Technol ; 56(7): 3195-3204, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31274887

RESUMO

Peanuts with fungal contamination may contain aflatoxin, a highly carcinogenic substance. We propose the use of hyperspectral imaging to quickly and noninvasively identify fungi-contaminated peanuts. The spectral data and spatial information of hyperspectral images were exploited to improve identification accuracy. In addition, successive projection was adopted to select the bands sensitive to fungal contamination. Furthermore, the joint sparse representation based classification (JSRC), which considers neighboring pixels as belonging to the same class, was adopted, and the support vector machine (SVM) classifier was used for comparison. Experimental results show that JSRC outperforms SVM regarding robustness against random noise and considering pixels at the edge of the peanut kernel. The classification accuracy of JSRC reached 99.2% and 98.8% at pixel scale, at least 98.4% and 96.8% at kernel scale for two peanut varieties, retrieving more accurate and consistent results than SVM. Moreover, fungi-contaminated peanuts were correctly marked in both learning and test images.

15.
Nanoscale ; 11(19): 9641-9653, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31065663

RESUMO

The interference between spectrally overlapping superradiant and subradiant plasmon resonances generates plasmonic Fano resonance, which allows for attractive applications such as electromagnetically induced transparency, light trapping, and refractometric sensing with high figures of merit. The active switching of plasmonic Fano resonance holds great promise in modulating optical signals, dynamically harvesting light energy, and constructing switchable plasmonic sensors. However, structures enabling the active control of plasmonic Fano resonance have rarely been achieved because of the fabrication complexity and cost. Herein we report on the realization of active plasmonic Fano resonance switching on Au nanosphere-nanoplate heterodimers. The active switching is enabled by varying the refractive index of a layer of polyaniline that fills in the gap between the Au nanosphere and the Au nanoplate. A reversible spectral shift of 20 nm is observed on the individual heterodimers during switching. The maximal spectral shift decreases as the interparticle gap distance is enlarged, showing a strong dependence of the spectral shift on the local electric field intensity enhancement in the gap region. This trend agrees with the predicted dependence of the refractive index sensitivity on the local field intensity enhancement. Our results provide insights into the development of plasmonic structures supporting actively switchable Fano resonances, which can lead to new technological applications, such as switchable cloaking and display, dynamic coding of optical signals, color sorting and filtering. The Au heterodimers with polyaniline in the gap can also be applied for the sensing of local environmental parameters such as pH values and heavy metal ions.

16.
Angew Chem Int Ed Engl ; 58(31): 10542-10546, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31112336

RESUMO

We herein demonstrate robust two-dimensional (2D) UFO-shaped plasmonic supraparticles made of gold nanoparticles (AuNPs) and MnO2 nanosheets (denoted as AMNS-SPs) for directly monitoring cell membrane vesiculation at the single-particle level. Because the decorated MnO2 nanosheets are ultrathin (4.2 nm) and have large diameters (230 nm), they are flexible enough for deformation and folding for parceling of the AuNPs during the endocytosis process. Correspondingly, the surrounding refractive index of the AuNPs increases dramatically, which results in a distinct red-shift of the localized surface plasmon resonance (LSPR). Such LSPR modulation provides a convenient and accurate means for directly monitoring the dynamic interactions between 2D nanomaterials and cell membranes. Furthermore, for the endocytosed AMNS-SPs, the subsequent LSPR blue-shift induced by etching effects of reducing molecules is promising for exploring the local environment redox states at the single-cell level.


Assuntos
Membrana Celular/química , Ouro/química , Compostos de Manganês/química , Nanoestruturas/química , Óxidos/química , Análise de Célula Única , Comunicação Celular , Substâncias Macromoleculares/química , Tamanho da Partícula , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
17.
Light Sci Appl ; 8: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016015

RESUMO

Elongated plasmonic nanoparticles have been extensively explored over the past two decades. However, in comparison with the dipolar plasmon mode that has attracted the most interest, much less attention has been paid to multipolar plasmon modes because they are usually thought to be "dark modes", which are unable to interact with far-field light efficiently. Herein, we report on an intriguing far-field scattering phenomenon, colour routing, based on longitudinal multipolar plasmon modes supported by high-aspect-ratio single Ag nanorods. Taking advantage of the distinct far-field behaviours of the odd and even multipolar plasmon modes, we demonstrate two types of colour routing, where the incident white light can be scattered into several beams with different colours as well as different propagation directions. Because of the narrow linewidths of the longitudinal multipolar plasmon modes, there is little spectral overlap between the adjacent peaks, giving rise to outstanding colour selectivity. Our experimental results and theoretical model provide a simple yet effective picture for understanding the far-field behaviour of the longitudinal multipolar plasmon modes and the resultant colour routing phenomenon. Moreover, the outstanding colour routing capability of the high-aspect-ratio Ag nanorods enables nanoscale optical components with simple geometries for controlling the propagation of light below the diffraction limit of light.

18.
Sensors (Basel) ; 19(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30583469

RESUMO

Yellow rust, a widely known destructive wheat disease, affects wheat quality and causes large economic losses in wheat production. Hyperspectral remote sensing has shown potential for the detection of plant disease. This study aimed to analyze the spectral reflectance of the wheat canopy in the range of 350⁻1000 nm and to develop optimal spectral indices to detect yellow rust disease in wheat at different growth stages. The sensitive wavebands of healthy and infected wheat were located in the range 460⁻720 nm in the early-mid growth stage (from booting to anthesis), and in the ranges 568⁻709 nm and 725⁻1000 nm in the mid-late growth stage (from filling to milky ripeness), respectively. All possible three-band combinations over these sensitive wavebands were calculated as the forms of PRI (Photochemical Reflectance Index) and ARI (Anthocyanin Reflectance Index) at different growth stages and assessed to determine whether they could be used for estimating the severity of yellow rust disease. The optimal spectral index for estimating wheat infected by yellow rust disease was PRI (570, 525, 705) during the early-mid growth stage with R² of 0.669, and ARI (860, 790, 750) during the mid-late growth stage with R² of 0.888. Comparison of the proposed spectral indices with previously reported vegetation indices were able to satisfactorily discriminate wheat yellow rust. The classification accuracy for PRI (570, 525, 705) was 80.6% and the kappa coefficient was 0.61 in early-mid growth stage, and the classification accuracy for ARI (860, 790, 750) was 91.9% and the kappa coefficient was 0.75 in mid-late growth stage. The classification accuracy of the two indices reached 84.1% and 93.2% in the early-mid and mid-late growth stages in the validated dataset, respectively. We conclude that the three-band spectral indices PRI (570, 525, 705) and ARI (860, 790, 750) are optimal for monitoring yellow rust infection in these two growth stages, respectively. Our method is expected to provide a technical basis for wheat disease detection and prevention in the early-mid growth stage, and the estimation of yield losses in the mid-late growth stage.


Assuntos
Basidiomycota/ultraestrutura , Técnicas Biossensoriais/métodos , Doenças das Plantas/microbiologia , Triticum/microbiologia , Basidiomycota/patogenicidade , Clorofila/química , Cor , Folhas de Planta/microbiologia , Tecnologia de Sensoriamento Remoto , Análise Espectral
19.
ACS Nano ; 12(12): 12541-12550, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30462918

RESUMO

Quantum tunneling plays an important role in coupled plasmonic nanocavities with ultrasmall gap distances. It can lead to intriguing applications such as plasmon mode excitation, hot carrier generation, and construction of ultracompact electro-optic devices. Molecular junctions bridging plasmonic nanocavities can provide a tunneling channel at moderate gap distances and therefore allow for the facile fabrication of quantum plasmonic devices. Herein we report on the large-scale bottom-up fabrication of molecular junction-bridged plasmonic nanocavities formed from Au nanoplate-Au nanosphere heterodimers. When the molecular junction turns from insulating to conductive, a distinct spectral change is observed, together with the emergence of a high-order charge transfer plasmon mode. The evolution of the electron tunneling-induced plasmon mode also greatly affects the Fano resonance feature in the scattering spectrum of the individual heterodimers. The molecular conductance at optical frequencies is estimated. The molecular junction-assisted electron tunneling is further verified by the reduced surface-enhanced Raman intensities of the molecules in the plasmonic nanocavity. We believe that our results provide an interesting system that can boost the investigation on the use of molecular junctions to modulate quantum plasmon resonances and construct molecular plasmonic devices.

20.
Nanoscale ; 10(31): 15058-15070, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30059125

RESUMO

Plasmonic metal nanocrystals, owing to their high sensitivity to the dielectric changes in the surrounding environment, can allow for the direct probing and monitoring of molecular binding on their surfaces. Anisotropic Au nanoplates possess high refractive index sensitivities, with their nanoscale sensing volumes located at their sharp tips and edges. One of the main challenges in molecular detection based on localized plasmon resonance is to increase the detection capability at the single-particle level. Vertically oriented Au nanoplates are more attractive candidates for developing ultrasensitive plasmonic sensors than horizontally oriented ones, as vertical Au nanoplates allow for more analyte molecules to access their sharp tips and edges. However, few reports have studied the sensing performance of vertically oriented, elongated, individual metal nanocrystals. Herein we report on the deposition of vertically oriented, hexagonal Au nanoplates on substrates and the study of their plasmonic and sensing properties. The vertically aligned nanoplates are compared with the horizontally oriented ones both experimentally and through numerical simulations. The vertically oriented nanoplates possess shorter plasmon resonance wavelengths and narrower peak widths than the horizontally oriented ones of similar sizes. The shorter plasmon wavelengths and smaller peak widths are also confirmed by knocking down the vertical Au nanoplates through mild perturbation and performing the scattering measurements beforehand and afterwards. Further scattering measurements of the Au nanoplates upon the adsorption of positively charged polyelectrolyte reveal that the vertical Au nanoplates are more sensitive to the polyelectrolyte molecules than the horizontal ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA