Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biosens Bioelectron ; 257: 116209, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640795

RESUMO

Early diagnosis of gastrointestinal (GI) diseases is important to effectively prevent carcinogenesis. Capsule endoscopy (CE) can address the pain caused by wired endoscopy in GI diagnosis. However, existing CE approaches have difficulty effectively diagnosing lesions that do not exhibit obvious morphological changes. In addition, the current CE cannot achieve wireless energy supply and attitude control at the same time. Here, we successfully developed a novel near-infrared fluorescence capsule endoscopy (NIFCE) that can stimulate and capture near-infrared (NIR) fluorescence images to specifically identify subtle mucosal microlesions and submucosal lesions while capturing conventional white light (WL) images to detect lesions with significant morphological changes. Furthermore, we constructed the first synergetic system that simultaneously enables multi-attitude control in NIFCE and supplies long-term power, thus addressing the issue of excessive power consumption caused by the NIFCE emitting near-infrared light (NIRL). We performed in vivo experiments to verify that the NIFCE can specifically "light up" tumors while sparing normal tissues by synergizing with probes actively aggregated in tumors, thus realizing specific detection and penetration. The prototype NIFCE system represents a significant step forward in the field of CE and shows great potential in efficiently achieving early targeted diagnosis of various GI diseases.


Assuntos
Endoscopia por Cápsula , Endoscopia por Cápsula/métodos , Humanos , Animais , Raios Infravermelhos , Técnicas Biossensoriais/métodos , Camundongos , Desenho de Equipamento , Imagem Óptica/métodos , Gastroenteropatias/diagnóstico , Gastroenteropatias/diagnóstico por imagem , Gastroenteropatias/patologia , Fluorescência
2.
Microorganisms ; 12(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38674657

RESUMO

Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.

3.
Front Pharmacol ; 15: 1342121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529184

RESUMO

Objective: Our previous studies substantiated that the biological activity of Schisandra chinensis lignans during the treatment of Alzheimer's disease (AD) was mediated by neurotransmitter levels, and 15 of its active components were identified. However, the pharmacokinetic and pharmacodynamic relationship of Schisandra chinensis lignans has been less studied. The objective of this study was to investigate the relationship between the pharmacokinetics and pharmacodynamics of Schisandra chinensis lignans in the treatment of AD, and to establish a pharmacokinetic-pharmacodynamic (PK-PD) model. Methods and Results: Herein, we established a microdialysis-ultra performance liquid chromatography-triple quadruple mass spectrometry (MD-LC-TQ-MS) technique that could simultaneously and continuously collect and quantitatively analyze the active compounds and neurotransmitters related to the therapeutic effects of Schisandra chinensis in awake AD rats. Eight lignans were detected in the hippocampus, and a PK-PD model was established. The fitted curves highlighted a temporal lag between the maximum drug concentration and the peak drug effect. Following treatment, the levels of four neurotransmitters tended to converge with those observed in the sham operation group. Conclusion: By establishing a comprehensive concentration-time-effect relationship for Schisandra chinensis lignans in AD treatment, our study provides novel insights into the in vivo effects of these lignans in AD rats.

4.
Talanta ; 273: 125868, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458085

RESUMO

Magnetic nanoparticle (MNP)-based immunochromatographic tests (ICTs) display long-term stability and an enhanced capability for multiplex biomarker detection, surpassing conventional gold nanoparticles (AuNPs) and fluorescence-based ICTs. In this study, we innovatively developed zwitterionic silica-coated MNPs (MNP@Si-Zwit/COOH) with outstanding antifouling capabilities and effectively utilised them for the simultaneous identification of the nucleocapsid protein (N protein) of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) and influenza A/B. The carboxyl-functionalised MNPs with 10% zwitterionic ligands (MNP@Si-Zwit 10/COOH) exhibited a wide linear dynamic detection range and the most pronounced signal-to-noise ratio when used as probes in the ICT. The relative limit of detection (LOD) values were achieved in 12 min by using a magnetic assay reader (MAR), with values of 0.0062 ng/mL for SARS-CoV-2 and 0.0051 and 0.0147 ng/mL, respectively, for the N protein of influenza A and influenza B. By integrating computer vision and deep learning to enhance the image processing of immunoassay results for multiplex detection, a classification accuracy in the range of 0.9672-0.9936 was achieved for evaluating the three proteins at concentrations of 0, 0.1, 1, and 10 ng/mL. The proposed MNP-based ICT for the multiplex diagnosis of biomarkers holds substantial promise for applications in both medical institutions and self-administered diagnostic settings.


Assuntos
Aprendizado Profundo , Influenza Humana , Nanopartículas Metálicas , Humanos , Ouro/química , Nanopartículas Metálicas/química , Influenza Humana/diagnóstico , Imunoensaio/métodos , Biomarcadores , Fenômenos Magnéticos
5.
iScience ; 27(2): 108962, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322989

RESUMO

Newcastle disease is a global problem that causes huge economic losses and threatens the health and welfare of poultry. Despite the knowledge gained on the metabolic impact of NDV on cells, the extent to which infection modifies the plasma metabolic network in chickens remains unknown. Herein, we performed targeted metabolomic and lipidomic to create a plasma metabolic network map during NDV infection. Meanwhile, we used single-cell RNA sequencing to explore the heterogeneity of lung tissue cells in response to NDV infection in vivo. The results showed that NDV remodeled the plasma phospholipid metabolism network. NDV preferentially targets infected blood endothelial cells, antigen-presenting cells, fibroblasts, and neutrophils in lung tissue. Importantly, NDV may directly regulate ribosome protein transcription to facilitate efficient viral protein translation. In conclusion, NDV infection remodels the plasma phospholipid metabolism network in chickens. This work provides valuable insights to further understand the pathogenesis of NDV.

6.
Curr Med Chem ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38299395

RESUMO

BACKGROUND: Lipid metabolism imbalance is involved in the mechanism of renal tubular injury in diabetic kidney disease (DKD). Fatty acid binding protein 4 (FABP4) has been reported to participate in cellular lipid toxicity. However, the expression of FABP4 in renal tissues of DKD and its correlation with clinical/ pathological parameters and prognosis have not been studied. METHOD: A retrospective cohort study was conducted in 108 hospitalized Type 2 diabetes (T2D) patients with renal injury, including 70 with DKD and 38 with NDKD (non-DKD). Clinical features, pathological findings, and follow-up parameters were collected. Serum and urine FABP4 were detected by ELISA. An immunohistochemistry stain was used to determine FABP4 in renal tubulointerstitium. A double immunofluorescence stain was employed to assess FABP4- and CD68-positive macrophages. Correlation analysis, logistic regression models, receiver operating characteristic (ROC), and Kaplan-Meier survival curve were performed for statistical analysis. RESULTS: DKD patients had increased expression of FABP4 and ectopic fat deposition in tubules. As shown by correlation analyses, FABP4 expression in renal tubules was positively correlated with UNAG (r=0.589, p=0.044) and ESRD (r=0.740, p=0.004). Multivariate regression analysis revealed that UNAG level was correlated with FABP4 expression level above median value (odds ratio:1.154, 95% confidence interval:1.009-1.321, p=0.037). High-expression of FABP4 in renal tubules of DKD was at an increased risk of ESRD. Increased FABP4 expression in inflammatory cells was also associated with ESRD in DKD. CONCLUSION: High-expression of FABP4 is involved in the pathogenesis of renal tubular lipid injury and is a risk factor for poor prognosis in DKD patients.

7.
Evol Appl ; 16(10): 1708-1720, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38020871

RESUMO

Animals living in high-altitude environments, such as the Tibetan Plateau, must face harsh environmental conditions (e.g., hypoxia, cold, and strong UV radiation). These animals' physiological adaptations (e.g., increased red cell production and turnover rate) might also be associated with the gut microbial response. Bilirubin is a component of red blood cell turnover or destruction and is excreted into the intestine and reduced to urobilinoids and/or urobilinogen by gut bacteria. Here, we found that the feces of macaques living in high-altitude regions look significantly browner (with a high concentration of stercobilin, a component from urobilinoids) than those living in low-altitude regions. We also found that gut microbes involved in urobilinogen reduction (e.g., beta-glucuronidase) were enriched in the high-altitude mammal population compared to the low-altitude population. Moreover, the spatial-temporal change in gut microbial function was more profound in the low-altitude macaques than in the high-altitude population, which might be attributed to profound changes in food resources in the low-altitude regions. Therefore, we conclude that a high-altitude environment's stress influences living animals and their symbiotic microbiota.

8.
Gastroenterol Rep (Oxf) ; 11: goad055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781571

RESUMO

Gastrointestinal cancers have become an important cause of cancer-related death in humans. Improving the early diagnosis rate of gastrointestinal tumors and improving the effect of surgical treatment can significantly improve the survival rate of patients. The conventional diagnostic method is high-definition white-light endoscopy, which often leads to missed diagnosis. For surgical treatment, intraoperative tumor localization and post-operative anastomotic state evaluation play important roles in the effect of surgical treatment. As a new imaging method, near-infrared fluorescence imaging (NIRFI) has its unique advantages in the diagnosis and auxiliary surgical treatment of gastrointestinal tumors due to its high sensitivity and the ability to image deep tissues. In this review, we focus on the latest advances of NIRFI technology applied in early diagnosis of gastrointestinal tumors, identification of tumor margins, identification of lymph nodes, and assessment of anastomotic leakage. In addition, we summarize the advances of NIRFI systems such as macro imaging and micro imaging systems, and also clearly describe the application process of NIRFI from system to clinical application, and look into the prospect of NIRFI applied in the theranostics of gastrointestinal tumors.

9.
BMC Genomics ; 24(1): 618, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853336

RESUMO

BACKGROUND: Extravillous trophoblast cell (EVT) differentiation and its communication with maternal decidua especially the leading immune cell type natural killer (NK) cell are critical events for placentation. However, appropriate in vitro modelling system and regulatory programs of these two events are still lacking. Recent trophoblast organoid (TO) has advanced the molecular and mechanistic research in placentation. Here, we firstly generated the self-renewing TO from human placental villous and differentiated it into EVTs (EVT-TO) for investigating the differentiation events. We then co-cultured EVT-TO with freshly isolated decidual NKs for further study of cell communication. TO modelling of EVT differentiation as well as EVT interaction with dNK might cast new aspect for placentation research. RESULTS: Single-cell RNA sequencing (scRNA-seq) was applied for comprehensive characterization and molecular exploration of TOs modelling of EVT differentiation and interaction with dNKs. Multiple distinct trophoblast states and dNK subpopulations were identified, representing CTB, STB, EVT, dNK1/2/3 and dNKp. Lineage trajectory and Seurat mapping analysis identified the close resemblance of TO and EVT-TO with the human placenta characteristic. Transcription factors regulatory network analysis revealed the cell-type specific essential TFs for controlling EVT differentiation. CellphoneDB analysis predicted the ligand-receptor complexes in dNK-EVT-TO co-cultures, which relate to cytokines, immunomodulation and angiogenesis. EVT was known to affect the immune properties of dNK. Our study found out that on the other way around, dNKs could exert effects on EVT causing expression changes which are functionally important. CONCLUSION: Our study documented a single-cell atlas for TO and its applications on EVT differentiation and communications with dNKs, and thus provide methodology and novel research cues for future study of human placentation.


Assuntos
Placenta , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Decídua/metabolismo , Diferenciação Celular , Organoides , Células Matadoras Naturais/metabolismo , Movimento Celular
10.
Cell Death Dis ; 14(10): 651, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37798282

RESUMO

Embryo implantation into the uterus is the gateway for successful pregnancy. Proper migration and invasion of embryonic trophoblast cells are the key for embryo implantation, and dysfunction causes pregnancy failure. Protein glycosylation plays crucial roles in reproduction. However, it remains unclear whether the glycosylation of trophoblasts is involved in trophoblast migration and invasion processes during embryo implantation failure. By Lectin array, we discovered the decreased α1,3-fucosylation, especially difucosylated Lewis Y (LeY) glycan, in the villus tissues of miscarriage patients when compared with normal pregnancy women. Downregulating LeY biosynthesis by silencing the key enzyme fucosyltransferase IV (FUT4) inhibited migration and invasion ability of trophoblast cells. Using proteomics and translatomics, the specific LeY scaffolding glycoprotein of mesoderm-specific transcript (MEST) with glycosylation site at Asn163 was identified, and its expression enhanced migration and invasion ability of trophoblast cells. The results also provided novel evidence showing that decreased LeY modification on MEST hampered the binding of MEST with translation factor eIF4E2, and inhibited implantation-related gene translation initiation, which caused pregnancy failure. The α1,3-fucosylation of MEST by FUT4 may serve as a new biomarker for evaluating the functional state of pregnancy, and a target for infertility treatment.


Assuntos
Implantação do Embrião , Trofoblastos , Gravidez , Humanos , Feminino , Glicosilação , Trofoblastos/metabolismo , Células Epiteliais/metabolismo , Biomarcadores/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo
11.
Postgrad Med J ; 100(1179): 20-27, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37827532

RESUMO

PURPOSE: To assess the regional epidemiological trends of kidney diseases over time in the South China using renal biopsy-proven cases. METHODS: This retrospective observational cohort study was conducted at the Institute of Nephrology, Second Xiangya Hospital of Central South University, and encompasses all patients diagnosed with kidney disease via biopsy from 2012 to 2021. RESULTS: The study sample consisted of 10 199 native kidneys, with a male-to-female ratio of 0.91:1 and an average age of 38.74 (±14.53) years. Primary glomerular nephropathy, systemic glomerular nephropathy (SGN), tubulointerstitial disease, and hereditary renal diseases accounted for 66.92 (6825)%, 24.49 (2498)%, 8.06 (822)%, and 0.53 (54)%, respectively. The leading pathologies of primary glomerular nephropathy remained the IgA nephropathy. The frequencies of IgA nephropathy and membranous nephropathy increased significantly, whereas the frequencies of minimal change disease and focal segmental glomerulosclerosis decreased (P < .001) between 2017 and 2021 than in the years 2012 and 2016. An earlier onset of membranous nephropathy was observed in the age group of 45-59 years compared to previous studies. The leading pathologies of SGN were found to be lupus nephritis (758 cases, 30.45%) and hypertension nephropathy (527 cases, 21.17%). The frequencies of hypertension nephropathy and diabetic nephropathy increased between 2017 and 2021 compared to 2012 and 2016 (P < .001), gradually becoming the leading pathological types of SGN. In elderly patients diagnosed with nephrotic syndrome, the frequencies of amyloidosis significantly increased (P < .01). CONCLUSION: Our study may provide insights for kidney disease prevention and public health strategies. What is already known on this topic The pathological spectrum of kidney diseases has undergone significant transformations in the past decade, driven by the escalating incidence of chronic diseases. Although there are studies exploring the renal biopsy findings from various regions in China which present both similarities and differences in epidemiology, few large-scale reports from the South China in recent decades were published. What this study adds Our findings reveal the following key observations: (i) increased proportion of middle-aged patients leading to the increasing average age at the time of biopsy;(ii) the frequencies of IgA nephropathy and membranous nephropathy (MN) increased significantly, whereas the frequencies of minimal change disease and focal segmental glomerulosclerosis decreased (P < .001) between 2017 and 2021 than in the years 2012 and 2016; (iii) earlier onset of MN in the age group of 45-59 years old was found in our study; and (iv) a higher frequency of hypertension nephropathy and DN presented over time, and frequency of amyloidosis increased in elderly patients diagnosed with NS. How this study might affect research, practice, or policy This single-center yet a large-scale study of the kidney disease spectrum in South China may provide a reference point for the diagnosis, treatment, and prevention of chronic kidney disease.


Assuntos
Amiloidose , Glomerulonefrite por IGA , Glomerulonefrite Membranosa , Glomerulosclerose Segmentar e Focal , Hipertensão Renal , Nefropatias , Nefrose Lipoide , Pessoa de Meia-Idade , Idoso , Humanos , Masculino , Feminino , Adulto , Lactente , Glomerulonefrite Membranosa/epidemiologia , Glomerulonefrite Membranosa/patologia , Glomerulonefrite por IGA/epidemiologia , Glomerulosclerose Segmentar e Focal/epidemiologia , Nefrose Lipoide/epidemiologia , Estudos Retrospectivos , Nefropatias/epidemiologia , Biópsia , China/epidemiologia
12.
Theranostics ; 13(14): 4821-4835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771766

RESUMO

Rationale: Novel vaccine R&D is essential to interrupt the COVID-19 pandemic and other epidemics in the future. Subunit vaccines have received tremendous attention for their low cost and safety. To improve the immunogenicity of subunit vaccines, we developed a novel vaccine adjuvant system. Methods: Here we rationally designed a CpG 1018 and graphene oxide-based bi-adjuvant system to deliver the Receptor-Binding Domain (RBD) of the SARS-CoV-2 spike protein and obtained the graphene oxide-based complex adjuvant nanovaccine (GCR). Furthermore, we developed a microneedle patch vaccine (MGCR) based on the GCR vaccine. Results: GCR nanovaccine displayed superb antigen loading and encapsulation efficiency. Two dosages of vaccination of GCR nanovaccine could elicit adequate RBD-specific binding antibody response with 2.14-fold higher IgG titer than Alum adjuvant vaccine. The peptide pools assay demonstrated the robust RBD-specific Type 1 Cellular response induced by the GCR nanovaccine in CD8+ T cells. Furthermore, we prepared an MGCR microneedle patch, which generated a similar RBD-specific binding antibody response to the GCR vaccine, sustained a high antibody level above 16 weeks, and significantly elevated the Tcm proportion in mouse spleen. The MGCR microneedle patch vaccine also could be stably stored at room temperature for several months and administrated without medical staff, which maximizes the vaccine distribution efficiency. Conclusion: The vaccine system could significantly improve the vaccine distribution rate in low-income areas and offer a potential vaccination approach to fight against the SARS-Cov-2 infection and other pandemics occurred in the future.

13.
J Pharm Biomed Anal ; 236: 115717, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37716276

RESUMO

As is well documented, Alzheimer's disease (AD) is the most prevalent neurodegenerative disease. Meanwhile, Schisandra polysaccharide (SCP) has been reported to exert a protective effect on the nervous system and can regulate metabolic disorders in AD-like symptoms of amyloid ß-peptide (Aß) 25-35-induced rats. Nevertheless, the underlying mechanisms and metabolic markers for the diagnosis of AD are yet to be determined. This study aimed to explore the neuroprotective effect and potential mechanism of action of SCP in AD-like symptoms of Aß25-35-induced rats by combining pharmacodynamics, metabolomics, and lipidomics. The pharmacodynamic results revealed that SCP significantly improved the spatial learning and long-term memory function and the morphology of neurons in the hippocampal CA1 region, alleviated inflammatory damage and oxidative stress, inhibited the activation of microglia and astrocytes, and increased the proportion of mature neurons of AD-like symptoms of Aß25-35-induced rats. The results of hippocampal metabolomics and serum lipidomics showed 46 and 48 potential biomarkers were identified for the SCP treatment of AD, respectively. The involved pathways principally comprised lipid metabolism, amino acid metabolism, and energy metabolism. This study elucidates the neuroprotective effect of SCP in AD and its mechanism from the perspective of metabolomics and lipidomics and provides a theoretical basis for the therapeutic effect of SCP in AD.

14.
PLoS Pathog ; 19(5): e1011384, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196026

RESUMO

Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients. Histological examination and blood gas tests are indicative of dyspnea. SARSr-CoV-2 infected multiple organs in pangolins, with the lungs the major target, and histological expression data revealed that ACE2 and TMPRSS2 were co-expressed with viral RNA. Transcriptome analysis indicated that virus-positive pangolins were likely to have inadequate interferon responses, with relative greater cytokine and chemokine activity in the lung and spleen. Notably, both viral RNA and viral proteins were detected in three pangolin fetuses, providing initial evidence for vertical virus transmission. In sum, our study outlines the biological framework of SARSr-CoV-2 in pangolins, revealing striking similarities to COVID-19 in humans.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , Pangolins/genética , SARS-CoV-2/genética , Virulência , Filogenia , RNA Viral , Tropismo
15.
Theor Appl Genet ; 136(6): 144, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249697

RESUMO

KEY MESSAGE: We developed a new method phenotypic recombination BSA/BSR (PR-BSA/BSR), which could simultaneously identify the candidate genomic regions associated with two traits in a segregating population. Bulked segregant analysis sequencing (BSA-seq) has been widely used for identifying the genomic regions affecting a certain trait. In this study, we developed a modified BSA/bulked segregant RNA-sequencing (BSR-seq) method, which we named phenotypic recombination BSA/BSR (PR-BSA/BSR), to simultaneously identify candidate genomic regions associated with two traits in a segregating population. Lateral branch angle (LBA) and flower-branch pattern (FBP) are two important traits associated with the peanut plant architecture because they affect the planting density and light use efficiency. We generated an F6 population (with two segregating traits) derived from a cross between the inbred lines Pingdu9616 (erect and sequential; ES-type) and Florunner (spreading and alternating; SA-type). The selection of bulks with extreme phenotypes was a key step in this study. Specifically, 30 individuals with recombinant phenotypes [i.e., spreading and sequential (SS-type) and erect and alternating (EA-type)] were selected to generate two bulks. The transcriptomes of individuals were sequenced and then the loci related to LBA and FBP were simultaneously detected via a ΔSNP-index strategy, which involved the direction of positive and negative peaks in the ∆SNP-index plot. The LBA-related locus was mapped to a 6.82 Mb region (101,743,223-108,564,267 bp) on chromosome 15, whereas the FBP-related locus was mapped to a 2.16 Mb region (117,682,534-119,846,824 bp) on chromosome 12. Furthermore, the marker-based classical QTL mapping method was used to analyze the PF-F6 population, which confirmed our PR-BSA/BSR results. Therefore, the PR-BSA/BSR method produces accurate and reliable data.


Assuntos
Arachis , Locos de Características Quantitativas , Arachis/genética , Mapeamento Cromossômico , Fenótipo , Recombinação Genética
16.
Nat Commun ; 14(1): 2488, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120646

RESUMO

Wildlife is reservoir of emerging viruses. Here we identified 27 families of mammalian viruses from 1981 wild animals and 194 zoo animals collected from south China between 2015 and 2022, isolated and characterized the pathogenicity of eight viruses. Bats harbor high diversity of coronaviruses, picornaviruses and astroviruses, and a potentially novel genus of Bornaviridae. In addition to the reported SARSr-CoV-2 and HKU4-CoV-like viruses, picornavirus and respiroviruses also likely circulate between bats and pangolins. Pikas harbor a new clade of Embecovirus and a new genus of arenaviruses. Further, the potential cross-species transmission of RNA viruses (paramyxovirus and astrovirus) and DNA viruses (pseudorabies virus, porcine circovirus 2, porcine circovirus 3 and parvovirus) between wildlife and domestic animals was identified, complicating wildlife protection and the prevention and control of these diseases in domestic animals. This study provides a nuanced view of the frequency of host-jumping events, as well as assessments of zoonotic risk.


Assuntos
COVID-19 , Quirópteros , Vírus , Animais , Animais Domésticos/virologia , Animais Selvagens/virologia , Animais de Zoológico/virologia , Quirópteros/virologia , Mamíferos/virologia , Pangolins/virologia , Filogenia , Zoonoses/virologia
17.
Ecol Evol ; 13(2): e9829, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844675

RESUMO

Numerous gut microbial studies have focused on bacteria. However, archaea, viruses, fungi, protists, and nematodes are also regular residents of the gut ecosystem. Little is known about the composition and potential interactions among these six kingdoms in the same samples. Here, we unraveled the complex connection among them using approximately 123 gut metagenomes from 42 mammalian species (including carnivores, omnivores, and herbivores). We observed high variation in bacterial and fungal families and relatively low variation in archaea, viruses, protists, and nematodes. We found that some fungi in the mammalian intestine might come from environmental sources (e.g., soil and dietary plants), and some might be native to the intestine (e.g., the occurrence of Neocallimastigomycetes). The Methanobacteriaceae and Plasmodiidae families (archaea and protozoa, respectively) were predominant in these metagenomes, whereas Onchocercidae and Trichuridae were the two most common nematodes, and Siphoviridae and Myoviridae the two most common virus families in these mammalian gut metagenomes. Interestingly, most of the pairwise co-occurrence patterns were significantly positive among these six kingdoms, and significantly negative networks mainly occurred between fungi and prokaryotes (both bacteria and archaea). Our study revealed some inconvenient characteristics in the mammalian gut microorganism ecosystem: (1) the community formed by members of the analyzed kingdoms reflects the life history of the host and the potential threat posed by pathogenic protists and nematodes in mammals; and (2) the networks suggest the existence of predicted mutualism among members of these six kingdoms and of the predicted competition, mainly among fungi and other kingdoms.

18.
Biol Res ; 56(1): 5, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732854

RESUMO

BACKGROUND: Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1ß in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1ß and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS: Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1ß, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1ß and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS: The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1ß in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1ß, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS: Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Caspases , Fibrose , Glucose , Inflamação , Interleucina-18 , NF-kappa B/metabolismo , Piroptose , RNA Interferente Pequeno
19.
Mar Drugs ; 21(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36827125

RESUMO

Parasitic diseases still threaten human health. At present, a number of parasites have developed drug resistance, and it is urgent to find new and effective antiparasitic drugs. As a rich source of biological compounds, marine natural products have been increasingly screened as candidates for developing new antiparasitic drugs. The literature related to the study of the antigenic animal activity of marine natural compounds from invertebrates and microorganisms was selected to summarize the research progress of marine compounds and the structure-activity relationship of these compounds in the past five years and to explore the possible sources of potential antiparasitic drugs for parasite treatment.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Animais , Humanos , Antiparasitários , Invertebrados , Organismos Aquáticos
20.
Evol Appl ; 16(1): 36-47, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699119

RESUMO

Animals living in captivity and the wild show differences in the internal structure of their gut microbiomes. Here, we performed a meta-analysis of the microbial data of about 494 fecal samples obtained from giant pandas (captive and wild giant pandas). Our results show that the modular structures and topological features of the captive giant panda gut microbiome differ from those of the wild populations. The co-occurrence network of wild giant pandas also contained more nodes and edges, indicating a higher complexity and stability compared to that of captive giant pandas. Keystone species analysis revealed the differences between geographically different wild populations, indicating the potential effect of geography on the internal modular structure. When combining all the giant panda samples for module analysis, we found that the abundant taxa (e.g., belonged to Flavobacterium, Herbaspirillum, and Escherichia-Shigella) usually acted as module hubs to stabilize the modular structure, while the rare taxa usually acted as connectors of different modules. We conclude that abundant and rare taxa play different roles in the gut bacterial ecosystem. The conservation of some key bacterial species is essential for promoting the development of the gut microbiome in pandas. The living environment of the giant pandas can influence the internal structure, topological features, and strength of interrelationships in the gut microbiome. This study provides new insights into the conservation and management of giant panda populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA