Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 268: 116239, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377827

RESUMO

Ionizing radiation in space, radiation devices or nuclear disasters are major threats to human health and public security. In this paper, in order to find the potential novel compounds decreasing the radiation-induced damage by targeting p53 apoptosis pathway and TLR2 passway, a series of novel quinoline derivatives were designed, synthesized, and evaluated their biological activities. Most of the synthesized compounds showed significant radioprotective effects in vitro, and the compound 5 has the best performance. Therefore, we verified its radioprotective activity in vivo and investigated the mechanism of its excellent activity. The results in vivo indicated that compound 5 not only markedly enhanced the survival rate (80 %) of mice 30 days after lethal exposure to irradiation, but also significantly reduced the radiation-induced damage to haematopoietic system and intestinal tissue of mice. The mechanistic studies indicated that compound 5 acted on the p53 pathway to reduce radiation-induced cell apoptosis and at the same time stimulated TLR2 to up-regulate the expressions of radiation protection factors. Molecular dynamics study shows that compound 5 would effectively bind to the TLR2 protein and further revealed the binding mechanism. Taken together, all the findings of our study demonstrate the quinoline derivative 5 is a potent radioprotective compound, which holds a great therapeutic potential for further development.


Assuntos
Quinolinas , Proteção Radiológica , Protetores contra Radiação , Humanos , Camundongos , Animais , Protetores contra Radiação/farmacologia , Protetores contra Radiação/química , Proteína Supressora de Tumor p53/metabolismo , Receptor 2 Toll-Like/metabolismo , Apoptose , Quinolinas/farmacologia
2.
Front Oncol ; 12: 974614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185284

RESUMO

Lung adenocarcinoma (LUAD) is a remarkably heterogeneous and aggressive disease with dismal prognosis of patients. The identification of promising prognostic biomarkers might enable effective diagnosis and treatment of LUAD. Aberrant activation of epithelial-mesenchymal transition (EMT) is required for LUAD initiation, progression and metastasis. With the purpose of identifying a robust EMT-related gene signature (E-signature) to monitor the survival outcomes of LUAD patients. In The Cancer Genome Atlas (TCGA) database, least absolute shrinkage and selection operator (LASSO) analysis and cox regression analysis were conducted to acquire prognostic and EMT-related genes. A 4 EMT-related and prognostic gene signature, comprising dickkopf-like protein 1 (DKK1), lysyl oxidase-like 2 (LOXL2), matrix Gla protein (MGP) and slit guidance ligand 3 (SLIT3), was identified. By the usage of datum derived from TCGA database and Western blotting analysis, compared with adjacent tissue samples, DKK1 and LOXL2 protein expression in LUAD tissue samples were significantly higher, whereas the trend of MGP and SLIT3 expression were opposite. Concurrent with upregulation of epithelial markers and downregulation of mesenchymal markers, knockdown of DKK1 and LOXL2 impeded the migration and invasion of LUAD cells. Simultaneously, MGP and SLIT3 silencing promoted metastasis and induce EMT of LUAD cells. In the TCGA-LUAD set, receiver operating characteristic (ROC) analysis indicated that our risk model based on the identified E-signature was superior to those reported in literatures. Additionally, the E-signature carried robust prognostic significance. The validity of prediction in the E-signature was validated by the three independent datasets obtained from Gene Expression Omnibus (GEO) database. The probabilistic nomogram including the E-signature, pathological T stage and N stage was constructed and the nomogram demonstrated satisfactory discrimination and calibration. In LUAD patients, the E-signature risk score was associated with T stage, N stage, M stage and TNM stage. GSEA (gene set enrichment analysis) analysis indicated that the E-signature might be linked to the pathways including GLYCOLYSIS, MYC TARGETS, DNA REPAIR and so on. In conclusion, our study explored an innovative EMT based prognostic signature that might serve as a potential target for personalized and precision medicine.

3.
Oxid Med Cell Longev ; 2022: 3192607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757509

RESUMO

Triptolide exhibits promising efficacy in various cancers and immune diseases while its clinical application has been strongly restricted by its severe side effects, especially cardiotoxicity. However, the underlying mechanism of triptolide-induced cardiotoxicity (TIC) remains unclear. The RNA-seq analysis of triptolide-injured AC16 human cardiomyocyte cell line hinted that ferroptosis is involved in TIC. Further experimental validations proved that triptolide triggered ferroptosis, as evidenced by significant accumulation of lipid peroxidation (4-HNE and MDA levels) and ferrous iron, as well as depletion of intracellular GSH. Furthermore, triptolide-induced iron overload involved the upregulation of TF/TRFC/DMT1 signal axis and the degradation of ferritin, which contribute to ROS generation via Fenton reaction. In addition, inhibition of the antioxidant Nrf2/HO-1 pathway was observed in TIC, which may also lead to the overproduction of lethal lipid peroxides. Mechanistically, using streptavidin-biotin affinity pull-down assay and computational molecular docking, we unveiled that triptolide directly binds to SLC7A11 to inactivate SLC7A11/GPX4 signal axis. More importantly, employment of a ferroptosis inhibitor Ferrostatin-1 alleviated TIC by partially reversing the inhibitory effects of triptolide on SLC7A11/GPX4 signal. Altogether, our study demonstrated that SLC7A11/GPX4 inactivation-mediated ferroptosis contributed to the pathogenesis of TIC. Combating ferroptosis may be a promising therapeutic avenue to prevent TIC.


Assuntos
Cardiotoxicidade , Ferroptose , Fenantrenos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Sistema y+ de Transporte de Aminoácidos/metabolismo , Cardiotoxicidade/metabolismo , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Ferroptose/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Fenantrenos/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
4.
Int J Biol Sci ; 18(7): 2962-2979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35541909

RESUMO

Tripartite motif-containing 44 (TRIM44) has recently been implicated in various pathological processes in numerous cancers, including lung adenocarcinoma (LUAD); however, its functional roles in chemoresistance are poorly understood. Herein, TRIM44 knockdown sensitized LUAD cells to cisplatin and enhanced cisplatin-induced apoptosis. Microarray analysis indicated that the "Role of BRCA1 in DNA damage" and the BRCA1 gene expression were positively regulated by TRIM44, which was further verified by immunofluorescence, qRT-PCR, and Western blotting. BRCA1 depletion effectively abolished TRIM44-modulated cisplatin resistance and regulation of homologous recombination (HR) repair. Interestingly, TRIM44 interacted with FLNA, an upstream regulator of BRCA1 as specified by STRING V 11.5, and facilitated its stability and deubiquitination. FLNA was also found to be required for the functions of TRIM44 in drug resistance. Using animal models, overexpression of TRIM44 was shown to confer resistance to cisplatin in a BRCA1- and FLNA-dependent manner. TRIM44 expression levels in tissues from cisplatin-resistant LUAD patients were significantly higher than those in tissues from cisplatin-sensitive LUAD patients. Collectively, our study results demonstrate that the TRIM44/FLNA/BRCA1 axis is involved in cisplatin chemoresistance, providing potential therapeutic targets for LUAD patients with cisplatin resistance.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Filaminas/genética , Filaminas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
5.
Clin Transl Med ; 12(4): e836, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35485206

RESUMO

BACKGROUND: There is growing evidence that endocytosis plays a pivotal role in cancer metastasis. In this study, we first identified endocytic and metastasis-associated genes (EMGs) and then investigated the biological functions and mechanisms of EMGs. METHODS: Cancer stem cells (CSCs)-like characteristics were evaluated by tumour limiting dilution assays, three-dimensional (3D) spheroid cancer models. Microarray analysis was used to identify the pathways significantly regulated by mammalian Eps15 homology domain protein 1 (EHD1) knockdown. Mass spectrometry (MS) was performed to identify EHD1-interacting proteins. The function of EHD1 as a regulator of cluster of differentiation 44 (CD44) endocytic recycling and lysosomal degradation was determined by CD44 biotinylation and recycling assays. RESULTS: EHD1 was identified as a significant EMG. Knockdown of EHD1 suppressed CSCs-like characteristics, epithelial-mesenchymal transition (EMT), migration and invasion of lung adenocarcinoma (LUAD) cells by increasing Hippo kinase cascade activation. Conversely, EHD1 overexpression inhibited the Hippo pathway to promote cancer stemness and metastasis. Notably, utilising MS analysis, the CD44 protein was identified as a potential binding partner of EHD1. Furthermore, EHD1 enhanced CD44 recycling and stability. Indeed, silencing of CD44 or disruption of the EHD1/CD44 interaction enhanced Hippo pathway activity and reduced CSCs-like traits, EMT and metastasis. Interestingly, specificity protein 1 (SP1), a known downstream target gene of the Hippo-TEA-domain family members 1 (TEAD1) pathway, was found to directly bind to the EHD1 promoter region and induce its expression. Among clinical specimens, the EHD1 expression level in LUAD tissues of metastatic patients was higher than that of non-metastatic patients. CONCLUSIONS: Our findings emphasise that EHD1 might be a potent anti-metastatic target and present a novel regulatory mechanism by which the EHD1/CD44/Hippo/SP1 positive feedback circuit plays pivotal roles in coupling modules of CSCs-like properties and EMT in LUAD. Targeting this loop may serve as a remedy for patients with advanced metastatic LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/genética , Animais , Endocitose/fisiologia , Retroalimentação , Humanos , Receptores de Hialuronatos/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mamíferos/metabolismo , Fator de Transcrição Sp1 , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Nanomaterials (Basel) ; 12(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159905

RESUMO

Numerical calculations of ultraviolet to near-infrared absorption spectra by cadmium selenide quantum dots (CdSe QDs) doped in anodic aluminum oxide pores were performed using a finite-difference time-domain model. The height, diameter, and periodic spacing of the pores were optimized. Light absorption by the dots was enhanced by increasing the height and decreasing the diameter of the pores. When the height was less than 1 µm, visible light absorption was enhanced as the spacing was reduced from 400 nm to 100 nm. No enhancement was observed for heights greater than 6 µm. Finally, the optical mode coupling of the aluminum oxide and the quantum dots was enhanced by decreasing the pore diameter and periodic spacing and increasing the height. Laser ablation verified light absorption enhancement by the CdSe QDs. The experiments verified the improvement in the laser-induced damage ability with a nanosecond laser at a wavelength of 355 nm after aluminum alloy 6061 was coated with functional films and fabricated based on numerical calculations.

7.
Front Oncol ; 11: 738222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868931

RESUMO

Tamoxifen (TAM) is the most commonly used adjuvant endocrine drug for hormone receptor-positive (HR+) breast cancer patients. However, how to accurately evaluate the risk of breast cancer recurrence and metastasis after adjuvant TAM therapy is still a major concern. In recent years, many studies have shown that the clinical outcomes of TAM-treated breast cancer patients are influenced by the activity of some cytochrome P450 (CYP) enzymes that catalyze the formation of active TAM metabolites like endoxifen and 4-hydroxytamoxifen. In this study, we aimed to first develop and validate an algorithm combining polymorphisms in CYP genes and clinicopathological signatures to identify a subpopulation of breast cancer patients who might benefit most from TAM adjuvant therapy and meanwhile evaluate major risk factors related to TAM resistance. Specifically, a total of 256 patients with invasive breast cancer who received adjuvant endocrine therapy were selected. The genotypes at 10 loci from three TAM metabolism-related CYP genes were detected by time-of-flight mass spectrometry and multiplex long PCR. Combining the 10 loci with nine clinicopathological characteristics, we obtained 19 important features whose association with cancer recurrence was assessed by importance score via random forests. After that, a logistic regression model was trained to calculate TAM risk-of-recurrence score (TAM RORs), which is adopted to assess a patient's risk of recurrence after TAM treatment. The sensitivity and specificity of the model in an independent test cohort were 86.67% and 64.56%, respectively. This study showed that breast cancer patients with high TAM RORs were less sensitive to TAM treatment and manifested more invasive characteristics, whereas those with low TAM RORs were highly sensitive to TAM treatment, and their conditions were stable during the follow-up period. There were some risk factors that had a significant effect on the efficacy of TAM. They were tissue classification (tumor Grade < 2 vs. Grade ≥ 2, p = 2.2e-16), the number of lymph node metastases (Node-Negative vs. Node < 4, p = 5.3e-07; Node < 4 vs. Node ≥ 4, p = 0.003; Node-Negative vs. Node ≥ 4, p = 7.2e-15), and the expression levels of estrogen receptor (ER) and progesterone receptor (PR) (ER < 50% vs. ER ≥ 50%, p = 1.3e-12; PR < 50% vs. PR ≥ 50%, p = 2.6e-08). The really remarkable thing is that different genotypes of CYP2D6*10(C188T) show significant differences in prediction function (CYP2D6*10 CC vs. TT, p < 0.019; CYP2D6*10 CT vs. TT, p < 0.037). There are more than 50% Chinese who have CYP2D6*10 mutation. So the genotype of CYP2D6*10(C188T) should be tested before TAM therapy.

8.
J Oncol ; 2021: 5193913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539783

RESUMO

BACKGROUND: Circular RNAs (circRNAs) may function as the decoys for microRNAs (miRNAs) or proteins, the templates for translation, and the sources of pseudogene generation. The purpose of this study is to determine the diagnostic circRNAs, which are related to lung adenocarcinoma (LUAD), that adsorb miRNAs on the basis of the competing endogenous RNA (ceRNA) hypothesis. METHODS: The differentially expressed circRNAs (DEcircRNAs) in LUAD were revealed by the microarray data (GSE101586 and GSE101684) that were obtained from the Gene Expression Omnibus (GEO) database. The miRNAs that were targeted by the DEcircRNAs were predicted with the CircInteractome, and the target mRNAs of the miRNAs were found by the miRDB and the TargetScan. The ceRNA network was built by the Cytoscape. The potential biological roles and the regulatory mechanisms of the circRNAs were investigated by the Gene Ontology (GO) enrichment analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The expression of the host genes of circRNAs was examined by the Ualcan. The survival analysis was performed by the Kaplan-Meier plotter. RESULTS: In comparison with normal lung tissues, LUAD tissues contained 7 overlapping cancer-specific DEcircRNAs with 294 miRNA response elements (MREs). Among the 7 DEcircRNAs, 3 circRNAs (hsa_circ_0072088, hsa_circ_0003528, and hsa_circ_0008274) were upregulated and 4 circRNAs (hsa_circ_0003162, hsa_circ_0029426, hsa_circ_0049271, and hsa_circ_0043256) were downregulated. A circRNA-miRNA-mRNA regulatory network, which included 33 differentially expressed miRNAs (DEmiRNAs) and 2007 differentially expressed mRNAs (DEmRNAs), was constructed. These mRNAs were enriched in the biological function of cell-cell adhesion, response to hypoxia, and stem cell differentiation and were involved in the PI3K-Akt signaling, HIF-1 signaling, and cAMP signaling pathways. CONCLUSION: Our results indicated that 7 DEcircRNAs could have diagnostic value for LUAD. Additionally, the circRNAs-mediated ceRNA network might provide a novel perspective into unraveling the pathogenesis and progression of LUAD.

9.
J Chem Phys ; 155(5): 054507, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364351

RESUMO

The microscopic molecular structure and dynamics of a new deep eutectic solvent (DES) composed of an ionic liquid (1-hexyl-3-methylimidazolium chloride) and an amide (trifluoroacetamide) at various molar ratios were investigated using linear and non-linear infrared spectroscopy with a vibrational probe. The use of the ionic liquid allows us to investigate the changes that the system undergoes with the addition of the amide or, equivalently, the changes from an ionic liquid to a DES. Our studies revealed that the vibrational probe in the DES senses a very similar local environment irrespective of the cation chemical structure. In addition, the amide also appears to perceive the same molecular environment. The concentration dependence studies also showed that the amide changes from being isolated from other amides in the ionic liquid environment to an environment where the amide-amide interactions are favored. In the case of the vibrational probe, the addition of the amide produced significant changes in the slow dynamics associated with the making and breaking of the ionic cages but did not affect the rattling-in-cage motions perceived by it. Furthermore, the concentration dependence of slow dynamics showed two regimes which are linked to the changes in the overall structure of the solution. These observations are interpreted in the context of a nanoscopic heterogeneous environment in the DES which, according to the observed dynamical regimes, appears at very large concentrations of the amide (molar ratio of greater than 1:1) since for lower amide molar ratios, the amide appears to be not segregated from the ionic liquid. This proposed molecular picture is supported by small angle x-ray scattering experiments.

10.
Cancer Lett ; 520: 12-25, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217785

RESUMO

Mammalian Eps15 homology domain 1 (EHD1) participates in the development of non-small cell lung cancer (NSCLC). However, its role in mediating aerobic glycolysis remains unclear. Herein, microarray analysis revealed that EHD1 expression was significantly correlated with the glycolysis/gluconeogenesis pathway. Clinically, EHD1 expression was positively correlated with the maximum standard uptake value (SUVmax) in 18F-FDG PET/CT scans. Additionally, EHD1 knockdown inhibited aerobic glycolysis and proliferation in vitro and in vivo. Furthermore, Wnt/ß-catenin signaling was identified as a critical EHD1-regulated pathway. Co-IP, native gel electrophoresis, and immunoblotting showed that EHD1 contributed to 14-3-3 dimerization via 14-3-3ζ and subsequent activation of ß-catenin/c-Myc signaling. Analysis of the EHD1 regulatory region via ENCODE revealed the potential for c-Myc recruitment, leading to transcriptional activation of EHD1 and formation of an EHD1/14-3-3ζ/ß-catenin/c-Myc positive feedback circuit. Notably, blocking this circuit with a Wnt/ß-catenin inhibitor dramatically inhibited tumor growth in vivo. The positive correlations among EHD1, 14-3-3ζ, c-Myc, and LDHA were further confirmed in NSCLC tissues. Collectively, our study demonstrated that EHD1 activates a 14-3-3ζ/ß-catenin/c-Myc regulatory circuit that synergistically promotes aerobic glycolysis and may constitute a promising therapeutic target for NSCLC.


Assuntos
Proteínas 14-3-3/genética , Carcinoma Pulmonar de Células não Pequenas/genética , L-Lactato Desidrogenase/genética , Proteínas de Transporte Vesicular/genética , beta Catenina/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas de Transporte Vesicular/ultraestrutura , Efeito Warburg em Oncologia , Via de Sinalização Wnt/genética
11.
Front Cell Dev Biol ; 9: 686975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124072

RESUMO

Non-small-cell lung carcinoma (NSCLC) is considered to be a fatal disease and characterized by a poor prognosis. Long non-coding RNAs (lncRNAs) have been reported to act as biomarkers and therapeutic targets in solid tumors. However, the expression of lncRNAs and their clinical relevance in NSCLC remain undetermined. The gene expression data profiled in The Cancer Genome Atlas and Gene Expression Omnibus (GSE81089) were employed to screen differentially expressed lncRNAs in NSCLC. LINC02678 was found to be upregulated in NSCLC and exhibited hypomethylation of the promoter region in NSCLC tissues. LINC02678 (also called RP11-336A10.5) was associated with poorer overall survival and relapse-free survival in NSCLC patients. In vitro models of gain- and loss-of-function demonstrated that LINC02678 promotes NSCLC progression by promoting NSCLC cell proliferation and cell cycle progression, as well as inducing NSCLC cell migration, invasion and epithelial-mesenchymal transition. LINC02678 was primarily located in the nucleus and could bind with the enhancer of zeste homolog 2 (EZH2). Moreover, we found that LINC02678 knockdown impaired the occupancy capacity of EZH2 and trimethylation of lysine 27 on histone 3 (H3K27me3) at the promoter region of cyclin dependent kinase inhibitor 1B (CDKN1B) and E-cadherin, as confirmed by ChIP-qPCR. A mouse transplantation model further demonstrated that LINC02678 could promote the tumorigenic and metastatic capacities of NSCLC cells. We identified LINC02678 as a tumor promoter in NSCLC, which enhanced the growth and metastasis of NSCLC cells by binding with EZH2, indicating that LINC02678 may serve as a potential biomarker for cancer diagnosis and treatment.

12.
J Oncol ; 2021: 2659550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987577

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) could function as competitive endogenous RNAs (ceRNAs) to competitively adsorb microRNAs (miRNAs), thereby regulating the expression of their target protein-coding mRNAs. In this study, we aim to identify more effective diagnostic and prognostic markers for lung adenocarcinoma (LUAD). METHODS: We obtained differentially expressed lncRNAs (DElncRNAs), miRNAs (DEmiRNAs), and mRNAs (DEmRNAs) for LUAD by using The Cancer Genomes Atlas (TCGA) portal. Weighted gene coexpression network analysis (WGCNA) was performed to unveil core gene modules associated with LUAD. The Cox proportional hazards model was performed to determine the prognostic significance of DElncRNAs. The diagnostic and prognostic significance of DElncRNAs was further verified based on the receiver operating characteristic curve (ROC). Cytoscape was used to construct the ceRNA networks comprising the lncRNAs-miRNAs-mRNAs axis based on the correlation obtained from the miRcode, miRDB, and TargetScan. RESULTS: Compared with normal lung tissues, 2355 DElncRNAs, 820 DEmiRNAs, and 17289 DEmRNAs were identified in LUAD tissues. We generated 8 WGCNA core modules in the lncRNAs coexpression network, 5 modules in the miRNAs, and 12 modules in the mRNAs coexpression network, respectively. One lncRNA module (blue) consisting of 441 lncRNAs, two miRNA modules (blue and turquoise) containing 563 miRNAs, and one mRNA module (turquoise), which consisted of 15162 mRNAs, were mostly significantly related to LUAD status. Furthermore, 67 DEmRNAs were found to be tumor-associated as well as the target genes of the DElncRNAs-DEmiRNAs axis. Survival analyses showed that 6 lncRNAs (LINC01447, WWC2-AS2, OGFRP1, LINC00942, LINC01168, and AC005863.1) were significantly correlated with the prognosis of LUAD patients. Ultimately, the potential ceRNA networks including 6 DElncRNAs, 4 DEmiRNAs, and 22 DEmRNAs were constructed. CONCLUSION: Our study indicated that 6 DElncRNAs had the possibilities as diagnostic and prognostic biomarkers for LUAD. The lncRNA-mediated ceRNA networks might provide novel insights into the molecular mechanisms of LUAD progression.

13.
J Phys Chem B ; 124(23): 4762-4773, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32421342

RESUMO

Deep eutectic solvents (DES) are emerging sustainable designer solvents viewed as greener and better alternatives to ionic liquids. Nonionic DESs possess unique properties such as viscosity and hydrophobicity that make them desirable in microextraction applications such as oil-spill remediation. This work builds upon a nonionic DES, NMA-LA DES, previously designed by our group. The NMA-LA DES presents a rich nanoscopic morphology that could be used to allocate solutes of different polarities. In this work, the possibility of solvating different solutes within the nanoscopically heterogeneous molecular structure of the NMA-LA DES is investigated using ionic and molecular solutes. In particular, the localized vibrational transitions in these solutes are used as reporters of the DES molecular structure via vibrational spectroscopy. The FTIR and 2DIR data suggest that the ionic solute is confined in a polar and continuous domain formed by NMA, clearly sensing the direct effect of the change in NMA concentration. In the case of the molecular nonionic and polar solute, the data indicates that the solute resides in the interface between the polar and nonpolar domains. Finally, the results for the nonpolar and nonionic solute (W(CO)6) are unexpected and less conclusive. Contrary to its polarity, the data suggest that the W(CO)6 resides within the NMA polar domain of the DES, probably by inducing a domain restructuring in the solvent. However, the data are not conclusive enough to discard the possibility that the restructuring comprises not only the polar domain but also the interface. Overall, our results demonstrate that the NMA-LA DES has nanoscopic domains with affinity to particular molecular properties, such as polarity. Thus, the presented results have a direct implication to separation science.

14.
J Phys Chem B ; 123(18): 3984-3993, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30978021

RESUMO

Deep eutectic solvents (DES) are a new class of designer solvents with a wide range of possible applications. DESs are typically made from an ionic compound and a hydrogen bond donor, but lately DESs made of nonionic compounds with interesting properties have started to appear. This study focuses on describing the structure, dynamics, and interactions of a nonionic DES composed of  N-methylacetamide (NMA) and lauric acid (LA). Linear IR and time-resolved IR experiments show that LA-NMA DES is the result of hydrogen bond interaction between the two molecular components, though the interaction energy is only favored by ∼1 kJ/mol with respect to the pure components. The IR experiments also reveal the presence of molecular heterogeneities produced by the nanosegregation of polar and nonpolar domains formed by N-methylacetamide and lauric acid, respectively. In addition, it is observed that the hydrogen bond interaction between components occurs at the interface of the two distinct polarity domains. The proposed molecular picture is also supported by the observation of nanodomains with the approximate size of two lauric acids via small-angle X-ray scattering.

15.
J Phys Chem A ; 122(5): 1185-1193, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29307186

RESUMO

The liquid structure of five different amide-based deep eutectic solvents (DESs) as a function of the chemical structure of the hydrogen bond acceptor (HBA) was investigated by linear Fourier transform infrared (FTIR) and two-dimensional infrared (2DIR) spectroscopies. Linear FTIR spectroscopy shows that the amide band of the DESs is not significantly affected by the chemical structure and symmetry of the HBA cation. However, its excitonic nature does not allow us to draw further conclusions. Analysis of the 13C amide line shapes derived from the 2DIR spectra reveals that the different DESs do not show appreciable differences in the level of disorganization. The vibrational dynamics, derived from the photon echo experiments on the 13C amide, shows that there is a fast component with a time scale of ∼1 ps irrespective of the HBA. The ultrafast dynamics is assigned to hydrogen bond making and breaking between amides. In addition, a slow dynamical component is observed in the time evolution of the photon echo signal. This contribution appears to be correlated with the asymmetry and polarity of the moieties of the HBA. The overall dynamics is rationalized in terms of a microscopic heterogeneous structure of the DESs, where the heterogeneities create domains that slow the hydrogen bond making and breaking. Molecular dynamics simulations provide additional support for our modeling of the data. In addition, the presence of nanoscopic heterogeneities is consistent with the observation of an endortherm at 23 °C in the differential scanning calorimetry thermogram, which evidenced a phase transition at 23 °C, even though the tested DESs have a melting temperature below -40 °C.

16.
ACS Appl Mater Interfaces ; 9(39): 33549-33553, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28895716

RESUMO

A new deep eutectic solvent (DES) was developed as a phase-selective gelator for oil-spill remediation. The newly designed nonionic DES is based on a combination of an amide (N-methylacetamide) and a long chain carboxylic acid (lauric acid) and does not require any synthetic procedure besides mixing. Our studies show that the DES works as gelator by forming a gel between lauric acid and the hydrocarbon, whereas the amide serves to form the DES and dissolves in water during the gelation process. In addition, the DES material has gelation properties comparable to those considered as state-of-the-art. Overall, the newly developed material shows a promising future in oil recovery methodologies.

17.
Sci Rep ; 5: 17077, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26584633

RESUMO

Mycoplasma gallisepticum is a significant pathogenic bacterium that infects poultry, causing chronic respiratory disease and sinusitis in chickens and turkeys, respectively. M. gallisepticum infection poses a substantial economic threat to the poultry industry, and this threat is made worse by the emergence of antibiotic-resistant strains. The mechanisms of resistance are often difficult to determine; for example, little is known about antibiotic resistance of M. gallisepticum at the proteome level. In this study, we performed comparative proteomic analyses of an antibiotic (tylosin)-resistant M. gallisepticum mutant and a susceptible parent strain using a combination of two-dimensional differential gel electrophoresis and nano-liquid chromatography-quadrupole-time of flight mass spectrometry. Thirteen proteins were identified as differentially expressed in the resistant strain compared to the susceptible strain. Most of these proteins were related to catalytic activity, including catalysis that promotes the formylation of initiator tRNA and energy production. Elongation factors Tu and G were over-expressed in the resistant strains, and this could promote the binding of tRNA to ribosomes and catalyze ribosomal translocation, the coordinated movement of tRNA, and conformational changes in the ribosome. Taken together, our results indicate that M. gallisepticum develops resistance to tylosin by regulating associated enzymatic activities.


Assuntos
Proteínas de Bactérias/metabolismo , Mycoplasma gallisepticum/efeitos dos fármacos , Proteoma/metabolismo , Proteômica/métodos , Tilosina/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Western Blotting , Cromatografia Líquida/métodos , Farmacorresistência Bacteriana/genética , Eletroforese em Gel Bidimensional , Enzimas/genética , Enzimas/metabolismo , Espectrometria de Massas/métodos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Mycoplasma gallisepticum/enzimologia , Mycoplasma gallisepticum/genética , Proteoma/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
J Chem Phys ; 142(21): 212438, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-26049458

RESUMO

Zwitterions are naturally occurring molecules that have a positive and a negative charge group in its structure and are of great importance in many areas of science. Here, the vibrational and hydration dynamics of the zwitterionic system betaine (N,N,N-trimethylglycine) is reported. The linear infrared spectrum of aqueous betaine exhibits an asymmetric band in the 1550-1700 cm(-1) region of the spectrum. This band is attributed to the carboxylate asymmetric stretch of betaine. The potential of mean force computed from ab initio molecular dynamic simulations confirms that the two observed transitions of the linear spectrum are related to two different betaine conformers present in solution. A model of the experimental data using non-linear response theory agrees very well with a vibrational model comprising of two vibrational transitions. In addition, our modeling shows that spectral parameters such as the slope of the zeroth contour plot and central line slope are both sensitive to the presence of overlapping transitions. The vibrational dynamics of the system reveals an ultrafast decay of the vibrational population relaxation as well as the correlation of frequency-frequency correlation function (FFCF). A decay of ∼0.5 ps is observed for the FFCF correlation time and is attributed to the frequency fluctuations caused by the motions of water molecules in the solvation shell. The comparison of the experimental observations with simulations of the FFCF from ab initio molecular dynamics and a density functional theory frequency map shows a very good agreement corroborating the correct characterization and assignment of the derived parameters.


Assuntos
Betaína/química , Simulação de Dinâmica Molecular , Vibração , Água/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA