Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124317, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692102

RESUMO

Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 µM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.


Assuntos
Cumarínicos , Corantes Fluorescentes , Óxidos de Nitrogênio , Cumarínicos/química , Humanos , Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/análise , Espectrometria de Fluorescência , Células HeLa
2.
Chembiochem ; 25(13): e202400229, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38700379

RESUMO

Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.


Assuntos
DNA , Nanoestruturas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , DNA/química , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Nanoestruturas/química , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
3.
Nitric Oxide ; 145: 49-56, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364967

RESUMO

The precise release and characterization of nitroxyl (HNO) gas signaling molecule remain a challenge due to its short lifetime to date. To solve this issue, an azobenzene-based HNO donor (Azo-D1) was proposed as a colorimetric and fluorometric chemosensor for HNO releasing, to release both HNO and an azobenzene fluorescent reporter together. Specifically, the Azo-D1 has an HNO release half-life of ∼68 min under physiological conditions. The characteristic color change from the original orange to the yellow color indicated the decomposition of the donor molecule. In addition, the stoichiometry release of HNO was qualitatively and quantitatively verified through the classical phosphine compound trap. As compared with the donor molecule by itself, the decomposed product demonstrates a maximum fluorescence emission at 424 nm, where the increase of fluorescence intensity by 6.8 times can be applied to infer the real-time concentration of HNO. Moreover, cellular imaging can also be achieved using this Azo-D1 HNO donor through photoexcitation at 405 and 488 nm, where the real-time monitoring of HNO release was achieved without consuming the HNO source. Finally, the Azo-D1 HNO donor would open a new platform in the exploration of the biochemistry and the biology of HNO.


Assuntos
Colorimetria , Óxidos de Nitrogênio , Óxidos de Nitrogênio/química , Compostos Azo
4.
Biosensors (Basel) ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36979572

RESUMO

Fluorescent molecular probes are very powerful tools that have been generally applied in cell imaging in the research fields of biology, pathology, pharmacology, biochemistry, and medical science. In the last couple of decades, numerous molecular probes endowed with high specificity to particular organelles have been designed to illustrate intracellular images in more detail at the subcellular level. Nowadays, the development of cell biology has enabled the investigation process to go deeply into cells, even at the molecular level. Therefore, probes that can sketch a particular organelle's location while responding to certain parameters to evaluate intracellular bioprocesses are under urgent demand. It is significant to understand the basic ideas of organelle properties, as well as the vital substances related to each unique organelle, for the design of probes with high specificity and efficiency. In this review, we summarize representative multifunctional fluorescent molecular probes developed in the last decade. We focus on probes that can specially target nuclei, mitochondria, endoplasmic reticulums, and lysosomes. In each section, we first briefly introduce the significance and properties of different organelles. We then discuss how probes are designed to make them highly organelle-specific. Finally, we also consider how probes are constructed to endow them with additional functions to recognize particular physical/chemical signals of targeted organelles. Moreover, a perspective on the challenges in future applications of highly specific molecular probes in cell imaging is also proposed. We hope that this review can provide researchers with additional conceptual information about developing probes for cell imaging, assisting scientists interested in molecular biology, cell biology, and biochemistry to accelerate their scientific studies.


Assuntos
Corantes Fluorescentes , Sondas Moleculares , Corantes Fluorescentes/química , Mitocôndrias/química , Retículo Endoplasmático , Núcleo Celular
5.
Cell Discov ; 8(1): 40, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504898

RESUMO

Ferroptosis is a regulated iron-dependent cell death characterized by the accumulation of lipid peroxidation. A myriad of facets linking amino acid, lipid, redox, and iron metabolisms were found to drive or to suppress the execution of ferroptosis. However, how the cells decipher the diverse pro-ferroptotic stress to activate ferroptosis remains elusive. Here, we report that protein O-GlcNAcylation, the primary nutrient sensor of glucose flux, orchestrates both ferritinophagy and mitophagy for ferroptosis. Following the treatment of ferroptosis stimuli such as RSL3, a commonly used ferroptosis inducer, there exists a biphasic change of protein O-GlcNAcylation to modulate ferroptosis. Pharmacological or genetic inhibition of O-GlcNAcylation promoted ferritinophagy, resulting in the accumulation of labile iron towards mitochondria. Inhibition of O-GlcNAcylation resulted in mitochondria fragmentation and enhanced mitophagy, providing an additional source of labile iron and rendering the cell more sensitive to ferroptosis. Mechanistically, we found that de-O-GlcNAcylation of the ferritin heavy chain at S179 promoted its interaction with NCOA4, the ferritinophagy receptor, thereby accumulating labile iron for ferroptosis. Our findings reveal a previously uncharacterized link of dynamic O-GlcNAcylation with iron metabolism and decision-making for ferroptosis, thus offering potential therapeutic intervention for fighting disease.

6.
Chem Asian J ; 17(5): e202101315, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989140

RESUMO

Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher-order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Pareamento de Bases , DNA/química , Nanoestruturas/química , Nanotecnologia
7.
Biosens Bioelectron ; 197: 113739, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781175

RESUMO

The molecular biomarkers are molecules that are closely related to specific physiological states. Numerous molecular biomarkers have been identified as targets for disease diagnosis and biological research. To date, developing highly efficient probes for the precise detection of biomarkers has become an attractive research field which is very important for biological and biochemical studies. During the past decades, not only the small chemical probe molecules but also the biomacromolecules such as enzymes, antibodies, and nucleic acids have been introduced to construct of biosensor platform to achieve the detection of biomarkers in a highly specific and highly efficient way. Nevertheless, improving the performance of the biosensors, especially in clinical applications, is still in urgent demand in this field. A noteworthy example is the Corona Virus Disease 2019 (COVID-19) that breaks out globally in a short time in 2020. The COVID-19 was caused by the virus called SARS-CoV-2. Early diagnosis is very important to block the infection of the virus. Therefore, during these months scientists have developed dozens of methods to achieve rapid and sensitive detection of the virus. Nowadays some of these new methods have been applied for producing the commercial detection kit and help people against the disease worldwide. DNA-based biosensors are useful tools that have been widely applied in the detection of molecular biomarkers. The good stability, high specificity, and excellent biocompatibility make the DNA-based biosensors versatile in application both in vitro and in vivo. In this paper, we will review the major methods that emerged in recent years on the design of DNA-based biosensors and their applications. Moreover, we will also briefly discuss the possible future direction of DNA-based biosensors design. We believe this is helpful for people interested in not only the biosensor field but also in the field of analytical chemistry, DNA nanotechnology, biology, and disease diagnosis.


Assuntos
Técnicas Biossensoriais , COVID-19 , Biomarcadores , DNA/genética , Humanos , SARS-CoV-2
8.
Chem Sci ; 12(22): 7602-7622, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34168817

RESUMO

In recent years, DNA has been widely noted as a kind of material that can be used to construct building blocks for biosensing, in vivo imaging, drug development, and disease therapy because of its advantages of good biocompatibility and programmable properties. However, traditional DNA-based sensing processes are mostly achieved by random diffusion of free DNA probes, which were restricted by limited dynamics and relatively low efficiency. Moreover, in the application of biosystems, single-stranded DNA probes face challenges such as being difficult to internalize into cells and being easily decomposed in the cellular microenvironment. To overcome the above limitations, DNA nanostructure-based probes have attracted intense attention. This kind of probe showed a series of advantages compared to the conventional ones, including increased biostability, enhanced cell internalization efficiency, accelerated reaction rate, and amplified signal output, and thus improved in vitro and in vivo applications. Therefore, reviewing and summarizing the important roles of DNA nanostructures in improving biosensor design is very necessary for the development of DNA nanotechnology and its applications in biology and pharmacology. In this perspective, DNA nanostructure-based probes are reviewed and summarized from several aspects: probe classification according to the dimensions of DNA nanostructures (one, two, and three-dimensional nanostructures), the common connection modes between nucleic acid probes and DNA nanostructures, and the most important advantages of DNA self-assembled nanostructures in the applications of biosensing, imaging analysis, cell assembly, cell capture, and theranostics. Finally, the challenges and prospects for the future development of DNA nanostructure-based nucleic acid probes are also discussed.

9.
Bioconjug Chem ; 32(2): 311-317, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33475341

RESUMO

Cell motions such as migration and change in cellular morphology are essential activities for multicellular organism in response to environmental stimuli. These activities are a result of coordinated clustering/declustering of integrin molecules at the cell membrane. Here, we prepared DNA origami nanosprings to modulate cell motions by targeting the clustering of integrin molecules. Each nanospring was modified with arginyl-glycyl-aspartic acid (RGD) domains with a spacing such that when the nanospring is coiled, the RGD ligands trigger the clustering of integrin molecules, which changes cell motions. The coiling or uncoiling of the nanospring is controlled, respectively, by the formation or dissolution of an i-motif structure between neighboring piers in the DNA origami nanodevice. At slightly acidic pH (<6.5), the folding of the i-motif leads to the coiling of the nanospring, which inhibits the motion of HeLa cells. At neutrality (pH 7.4), the unfolding of the i-motif allows cells to resume mechanical movement as the nanospring becomes uncoiled. We anticipate that this pH-responsive DNA nanoassembly is valuable to inhibit the migration of metastatic cancer cells in acidic extracellular environment. Such a chemo-mechanical modulation provides a new mechanism for cells to mechanically respond to endogenous chemical cues.


Assuntos
Movimento Celular , DNA/química , Nanoestruturas/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio
10.
J Am Chem Soc ; 142(22): 10042-10049, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32383870

RESUMO

For proteins and DNA secondary structures such as G-quadruplexes and i-motifs, nanoconfinement can facilitate their folding and increase structural stabilities. However, the properties of the physiologically prevalent B-DNA duplex have not been elucidated inside the nanocavity. Using a 17-bp DNA duplex in the form of a hairpin stem, here, we probed folding and unfolding transitions of the hairpin DNA duplex inside a DNA origami nanocavity. Compared to the free solution, the DNA hairpin inside the nanocage with a 15 × 15 nm cross section showed a drastic decrease in mechanical (20 → 9 pN) and thermodynamic (25 → 6 kcal/mol) stabilities. Free energy profiles revealed that the activation energy of unzipping the hairpin DNA duplex decreased dramatically (28 → 8 kcal/mol), whereas the transition state moved closer to the unfolded state inside the nanocage. All of these indicate that nanoconfinement weakens the stability of the hairpin DNA duplex to an unexpected extent. In a DNA hairpin made of a stem that contains complementary telomeric G-quadruplex (GQ) and i-motif (iM) forming sequences, formation of the Hoogsteen base pairs underlining the GQ or iM is preferred over the Watson-Crick base pairs in the DNA hairpin. These results shed light on the behavior of DNA in nanochannels, nanopores, or nanopockets of various natural or synthetic machineries. It also elucidates an alternative pathway to populate noncanonical DNA over B-DNA in the cellular environment where the nanocavity is abundant.


Assuntos
DNA/química , Nanopartículas/química , Quadruplex G , Conformação de Ácido Nucleico
11.
Anal Chem ; 92(9): 6470-6477, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32249564

RESUMO

Nucleic acid aptamers have been widely used in various fields such as biosensing, DNA chip, and medical diagnosis. However, the high susceptibility of nucleic acids to ubiquitous nucleases reduces the biostability of aptamers and limits their applications in biological contexts. Therefore, improving the biostability of aptamers becomes an urgent need. Herein, we present a simple strategy to resolve this problem by directly replacing the d-DNA-based aptamers with left-handed l-DNA. By testing several reported aptamers against respective targets, we found that our proposed strategy stood up well for nonchiral small molecule targets (e.g., Hemin and cationic porphyrin) and chiral targets whose interactions with aptamers are chirality-independent (e.g., ATP). We also found that the l-DNA aptamers were indeed endowed with greatly improved biostability due to the extraordinary resistance of l-DNA to nuclease digestion. With respect to other small-molecule targets whose interactions with aptamers are chirality-dependent (e.g., kanamycin) and biomacromolecules (e.g., tyrosine kinase-7), however, the proposed strategy was not entirely effective likely due to the participation of the DNA backbone chirality into the target recognition. In spite of this limitation, this strategy indeed paves an easy way to screen highly biostable aptamers important for the applications in many fields.


Assuntos
Trifosfato de Adenosina/análise , Aptâmeros de Nucleotídeos/química , DNA/química , Células HeLa , Humanos , Imagem Óptica
12.
Analyst ; 145(10): 3742-3748, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32343290

RESUMO

A novel nucleic acid-based isothermal signal amplification strategy, named cross-boosting extension-nicking reaction (CBENR) is developed and successfully used for rapid and ultrasensitive detection of polynucleotide kinase (PNK) activity. Only two simple oligonucleotides (recognition substrate (RS) and TaqMan probe) are applied to construct the PNK-sensing platform. In the presence of PNK, the 3'-phosphate end of RS will be converted to the 3'-hydroxyl one, and then extended to a long poly-adenine (poly-A) sequence under the catalysis of terminal deoxynucleotidyl transferase (TdT). The poly-A sequence provides multiple binding sites for the TaqMan probe to form multiple DNA duplexes. Subsequently, ribonuclease HII (RNase HII) cuts the TaqMan probe into two parts at the pre-set uracil site, generating a fluorescence signal and providing new substrates for TdT elongation. The TdT-catalyzed substrate extension and RNase HII-catalyzed probe nicking are boosted by each other, resulting in persistent enlargement of these two reactions and thus giving ultrahigh signal amplification efficiency. Utilizing the CBENR-based PNK sensor, ultrasensitive detection of PNK activity was achieved with a detection limit as low as 3.0 × 10-6 U mL-1. Quantification of endogenous PNK activity at the single-cell level and the screening/evaluation of PNK inhibitors were also achieved.


Assuntos
Técnicas Biossensoriais/métodos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Sondas de DNA/genética , Sondas de DNA/metabolismo , Células HeLa , Humanos
13.
ACS Appl Mater Interfaces ; 11(43): 39624-39632, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31573175

RESUMO

To advance anti-tumor efficiency and lessen the adverse effect caused by nanodrug residues in the body, a smart nanoagent system is developed and successfully used in intracellular ATP imaging and in vivo chemo-photothermal synergetic therapy. The nanoagent system is facilely prepared using a DNA complex to modify gold nanoparticles (AuNPs). The DNA complex is formed by three oligonucleotides (ATP aptamer, rC-DNA, and rG-DNA). The CG-rich structure in a ternary DNA complex could be exploited for payload of chemotherapeutic medicine doxorubicin (DOX), thus making efficient DOX transport into the tumor site possible. In tumor cells, especially in acidic organelles (e.g., endosome and lysosome), DOX could be rapidly released via the dual stimuli of overexpressed ATP and pH. What is more, the specific recognition of a fluorescently labeled aptamer strand to ATP can achieve the intracellular ATP imaging. pH-controlled reversible folding and unfolding of intermolecular i-motif formed by C-rich strands can lead to intracellular in situ assembly of AuNP aggregates with high photothermal conversion efficiency and promote relatively facile renal clearance of AuNPs through the disassociation of the aggregates in extracellular environments. Experiments in vivo and vitro present feasibility for a synergetic chemo-photothermal therapy. Such an in situ reversible assembly strategy of a chemo-photothermal agent also presents a new paradigm for a smart and highly efficient disease treatment with reduced side effects.


Assuntos
Trifosfato de Adenosina/metabolismo , Doxorrubicina , Ouro , Hipertermia Induzida , Nanopartículas Metálicas , Imagem Molecular , Neoplasias Experimentais , Fototerapia , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Ouro/química , Ouro/farmacocinética , Ouro/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/diagnóstico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Anal Chem ; 91(20): 13165-13173, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31512479

RESUMO

The introduction of nanotechnology can overcome some inherent drawbacks of traditional DNA probes, thus promoting their applications in living cells. Herein, a three-dimensional DNA nanostructure, a DNA nanolantern, was prepared via simple nucleotide hybridization of four short-stranded oligonucleotides and successfully applied to the construction of a novel DNA probe and signal amplifier. Compared to most reported DNA nanostructures, a DNA nanolantern shows the distinct advantages of low cost, easy design and preparation, more and arbitrary adjusted probe numbers, and high fluorescence resonance energy transfer (FRET) signal readout. Compared to traditional DNA probes, the constructed nanolantern-based one has improved cell internalization efficiency, enhanced biostability, accelerated reaction kinetics, excellent biocompatibility, and greatly reduced false-positive output and was demonstrated to work well for probing the expression level of tumor-related mRNA and microRNA in living cells. The DNA nanolantern can also be easily integrated with some reported signal amplification strategies, e.g., isothermal hybridization chain reaction (HCR), and the obtained signal amplifier combines the advantages of the DNA nanolantern and the HCR, enabling sensitive imaging detection of ultralow abundance targets in living cells. This work demonstrated that this simple DNA nanostructure can not only improve the performance of traditional DNA probes but can also be easily integrated with reported DNA-based strategy and technology, thus showing a broad application prospect.


Assuntos
Biomarcadores Tumorais/análise , Sondas de DNA/química , DNA/química , MicroRNAs/análise , Nanoestruturas/química , RNA Mensageiro/análise , Linhagem Celular Tumoral , DNA/genética , Sondas de DNA/genética , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Humanos , Limite de Detecção , MicroRNAs/genética , Hibridização de Ácido Nucleico , RNA Mensageiro/genética , Timidina Quinase/genética
15.
Chem Commun (Camb) ; 55(53): 7611-7614, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31192323

RESUMO

We applied a modified exponential amplification reaction (EXPAR) strategy to design a label-free and "one-pot" biosensor for ultrasensitive detection of polynucleotide kinase (PNK). This method was also successfully applied in the screening of PNK inhibitors and analysis of the endogenous PNK activity at the single-cell level.


Assuntos
Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , Polinucleotídeo 5'-Hidroxiquinase/análise , Razão Sinal-Ruído , Células HeLa , Humanos , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Espectrometria de Fluorescência
16.
Chem Commun (Camb) ; 55(53): 7603-7606, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31199419

RESUMO

A biosensor with all the advantages of ultra-high sensitivity, easy operation, straightforward signal output and universal applicability is introduced. The biosensor was demonstrated to work well in the detection of polynucleotide kinase and DAM methyltransferase, thus providing a powerful tool for clinical diagnosis, drug screening and disease therapeutic assay.


Assuntos
Técnicas Biossensoriais , DNA/química , Técnicas de Amplificação de Ácido Nucleico , Polinucleotídeo 5'-Hidroxiquinase/análise , DNA Metiltransferases Sítio Específica (Adenina-Específica)/análise , Temperatura , Células HeLa , Humanos , Polinucleotídeo 5'-Hidroxiquinase/genética , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Espectrometria de Fluorescência
17.
ACS Appl Mater Interfaces ; 11(16): 14684-14692, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30942569

RESUMO

Developing a highly efficient carrier for tumor-targeted delivery and site-specific release of anticancer drugs is a good way to overcome the side effects of traditional cancer chemotherapy. Benefiting from the nontoxic and biocompatible characteristics, DNA-based drug carriers have attracted increasing attention. Herein, we reported a novel and readily manipulated strategy to construct spherical DNA nanocarriers. In this strategy, terminal deoxynucleotidyl transferase (TdT)-catalyzed DNA extension reaction is used to prepare a thick DNA layer on a gold nanoparticle (AuNP) surface by extending long poly(C) sequences from DNA primers immobilized on AuNPs. The poly(C) extension products can then hybridize with G-rich oligonucleotides to give CG-rich DNA duplexes (for loading anticancer drug doxorubicin, Dox) and multiple AS1411 aptamers. Via synergic recognition of multiple aptamer units to nucleolin proteins, biomarker of malignant tumors, Dox-loaded DNA carrier can be efficiently internalized in cancer cells and achieve burst release of drugs in acidic organelles because of i-motif formation-induced DNA duplex destruction. An as-prepared pH-responsive drug carrier was demonstrated to be promising for highly efficient delivery of Dox and selective killing of cancer cells in both in vitro and in vivo experiments, thus showing a huge potential in anticancer therapy.


Assuntos
Adutos de DNA , DNA Nucleotidilexotransferase/química , Doxorrubicina , Ouro , Nanopartículas Metálicas , Neoplasias Experimentais/tratamento farmacológico , Animais , Aptâmeros de Nucleotídeos , Adutos de DNA/química , Adutos de DNA/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Ouro/química , Ouro/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células NIH 3T3 , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
ACS Sens ; 4(4): 1090-1096, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30945529

RESUMO

Telomerase is a universal biomarker of malignant tumors. Sensitive and reliable analysis for telomerase activity is of vital importance for both early diagnosis and therapy of malignant tumors. Herein, a novel fluorescent strategy was proposed for sensitive and label-free detection of telomerase activity. One highlight of this strategy is that an exponential signal amplification can be triggered by a very short telomerase extension product (TEP). Without adding dATP, the designed telomerase primer can be easily controlled to extend five bases (GGGTT) to give short TEP with definite length. The resulting short TEP can then be constructed as a circular rolling circle amplification (RCA) template and thus initiate a nicking enzyme-mediated exponential RCA, producing G-rich amplification products that can be sensitively probed via specific binding between the fluorescent dye Thioflavin T (ThT) and the nucleic acid G-quadruplexes. Elevated telomerase translocation efficiency, combined with exponential signal amplification and specific probing of RCA products by ThT, endow the sensing platform with extraordinarily high detection sensitivity. The requirement for short TEP increases the possibility to analyze telomerase with low activity. The proposed sensing platform can achieve sensitive telomerase activity detection in individual cells, even with the interference of accumulated normal cells. It was also demonstrated to show excellent capability in screening for the inhibitors of telomerase. Therefore, the proposed sensing platform has great potential for not only clinical diagnosis but also anticancer drug development.


Assuntos
Ensaios Enzimáticos/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Espectrometria de Fluorescência/métodos , Telomerase/análise , Aminobenzoatos/química , Benzotiazóis/química , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , DNA/química , DNA/genética , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Quadruplex G , Humanos , Naftalenos/química , Análise de Célula Única/métodos , Telomerase/antagonistas & inibidores
19.
Nucleic Acids Res ; 47(7): 3295-3305, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30820532

RESUMO

To modulate biological functions, G-quadruplexes in genome are often non-specifically targeted by small molecules. Here, specificity is increased by targeting both G-quadruplex and its flanking duplex DNA in a naturally occurring dsDNA-ssDNA telomere interface using polyamide (PA) and pyridostatin (PDS) conjugates (PA-PDS). We innovated a single-molecule assay in which dissociation constant (Kd) of the conjugate can be separately evaluated from the binding of either PA or PDS. We found Kd of 0.8 nM for PA-PDS, which is much lower than PDS (Kd ∼ 450 nM) or PA (Kd ∼ 35 nM). Functional assays further indicated that the PA-PDS conjugate stopped the replication of a DNA polymerase more efficiently than PA or PDS. Our results not only established a new method to dissect multivalent binding into actions of individual monovalent components, they also demonstrated a strong and specific G-quadruplex targeting strategy by conjugating highly specific duplex-binding molecules with potent quadruplex ligands.


Assuntos
Aminoquinolinas/química , Nylons/química , Ácidos Picolínicos/química , Telômero/química , Sequência de Bases , DNA/síntese química , DNA/química , DNA/metabolismo , Humanos , Especificidade por Substrato , Telômero/metabolismo
20.
Chem Sci ; 10(8): 2290-2297, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30881654

RESUMO

DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA