RESUMO
BACKGROUND: Understanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes. METHODS: We propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil. RESULTS: The time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats. CONCLUSIONS: The proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results.
RESUMO
Passive acoustic and Argos satellite telemetry are common methods for tracking marine species and are often used similarly to quantify space use. However, data-driven comparisons of these methods and their associated ecological inferences are limited. To address this, we compared temporal durations, spatial resolutions, financial costs and estimates of occurrence and range distributions for each tracking approach using nine juvenile green turtles (Chelonia mydas) in Bimini, Bahamas. Tracking durations were similar, although acoustic tracking provided higher spatiotemporal resolution than satellite tracking. Occurrence distributions (95%) estimated from satellite telemetry were 12 times larger than those from acoustic telemetry, while satellite range distributions (95%) were 89 times larger. While individuals generally remained within the extent of the acoustic receiver array, gaps in coverage were identified. These gaps, combined with the lower accuracy of satellite telemetry, were likely drivers for the larger satellite distributions. Costs differed between telemetry methods, with acoustic telemetry being less expensive at larger sample sizes with a previously established array. Our results suggest that acoustic and satellite telemetry may not provide similar inferences of individual space use. As such, we provide recommendations to identify telemetry methods appropriate for specific study objectives and provide discussion on the biases of each.
RESUMO
Sympatric species may overlap in their use of habitat and dietary resources, which can increase competition. Comparing the ecological niches and quantifying the degree of niche overlap among these species can provide insights into the extent of resource overlap. This information can be used to guide multispecies management approaches tailored to protect priority habitats that offer the most resources for multiple species. Stable isotope analysis is a valuable tool used to investigate spatial and trophic niches, though few studies have employed this method for comparisons among sympatric marine turtle species. For this study, stable carbon, nitrogen, and sulfur isotope values from epidermis tissue were used to quantify isotopic overlap and compare isotopic niche size in loggerhead (Caretta caretta), green (Chelonia mydas), and Kemp's ridley (Lepidochelys kempii) turtles sampled from a shared foraging area located offshore of Crystal River, Florida, USA. Overall, the results revealed high degrees of isotopic overlap (>68%) among species, particularly between loggerhead and Kemp's ridley turtles (85 to 91%), which indicates there may be interspecific competition for resources. Samples from green turtles had the widest range of isotopic values, indicating they exhibit higher variability in diet and habitat type. Samples from loggerhead turtles had the most enriched mean δ34S, suggesting they may forage in slightly different micro-environments compared with the other species. Finally, samples from Kemp's ridley turtles exhibited the smallest niche size, which is indicative of a narrower use of resources. This is one of the first studies to investigate resource use in a multispecies foraging aggregation of marine turtles using three isotopic tracers. These findings provide a foundation for future research into the foraging ecology of sympatric marine turtle species and can be used to inform effective multispecies management efforts.
RESUMO
Advances in biologging have increased the understanding of how animals interact with their environment, especially for cryptic species. For example, giant armadillos (Priodontes maximus) are the largest extant species of armadillo but are rarely encountered due to their fossorial and nocturnal behavior. Through the analysis of speed, turning angles, and accelerometer activity counts, we estimated behavioral states, characterized activity budgets, and investigated the state-habitat associations exhibited by individuals monitored with GPS telemetry in the Brazilian Pantanal from 2019 to 2020. This methodology is proposed as a useful framework for the identification of priority habitat. Using the non-parametric Bayesian mixture model for movement (M3), we estimated four latent behavioral states that were named 'vigilance-excavation', 'local search', 'exploratory', and 'transit'. These states appeared to correspond with behavior near burrows or termite mounds, foraging, ranging, and rapid movements, respectively. The first and last hours of activity presented relatively high proportions of the vigilance-excavation state, while most of the activity period was dominated by local search and exploratory states. The vigilance-excavation state occurred more frequently in regions between forest and closed savannas, whereas local search was more likely in high proportions of closed savanna. Exploratory behavior probability increased in areas with high proportions of both forest and closed savanna. Our results establish a baseline for behavioral complexity, activity budgets, and habitat associations in a relatively pristine environment that can be used for future work to investigate anthropogenic impacts on giant armadillo behavior and fitness. The integration of accelerometer and GPS-derived movement data through our mixture model has the potential to become a powerful methodological approach for the conservation of other cryptic species.
Assuntos
Tatus , Ecossistema , Animais , Teorema de Bayes , Florestas , BrasilRESUMO
There is a paucity of information on the levels of PAHs and PCBs in the deep-sea (≥200 m). In this study, the body-burdens of 16 PAHs and 29 PCBs were measured in: Actinaria (sea anemones), Holothuroidea (sea cucumber), Pennatulacea (sea pens), and Crinoidea (sea lilies) in the deep Gulf of Mexico. All epibenthic species were collected at depths of approximately 2000 m. The PAH and PCB congener profile displayed a similar pattern of bioaccumulation across all four taxa. The high molecular weight PAH, dibenz[a,h]anthracene, was the most abundant PAH in all organisms, ranging from 36 to 53% of sum total PAHs. PCBs 101 and 138 exhibited the highest levels at 20-25% of total congener concentrations in all taxa. The exposure to PAHs and PCBs is likely attributed to contaminated particulate organic matter that is consumed by the deposit and filter feeding epibenthic megafauna sampled in this study.
Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Golfo do México , Invertebrados , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análiseRESUMO
Tooth morphology is often used to inform the feeding ecology of an organism as these structures are important to procure and process dietary resources. In sharks, differences in morphology may facilitate the capture and handling of prey with different physical properties. However, few studies have investigated differences in tooth morphology over ontogeny, throughout the jaws of a single species, or among species at multiple tooth positions. Bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead sharks (Sphyrna tiburo) are coastal predators that exhibit ontogenetic dietary shifts, but differ in their feeding ecologies. This study measured tooth morphology at six positions along the upper and lower jaws of each species using elliptic Fourier analysis to make comparisons within and among species over their ontogeny. Significant ontogenetic differences were detected at four of the six tooth positions in bull sharks, but only the posterior position on the lower jaw appeared to exhibit a functionally relevant shift in morphology. No ontogenetic changes in morphology were detected in blacktip or bonnethead sharks. Intraspecific comparisons found that most tooth positions significantly differed from one another across all species, but heterodonty was greatest in bull sharks. Additionally, interspecific comparisons found differences among all species at each tooth position except between bull and blacktip sharks at two positions. These morphological patterns within and among species may have implications for prey handling efficiency, as well as in providing insight for paleoichthyology studies and reevaluating heterodonty in sharks.
Assuntos
Análise de Fourier , Tubarões/anatomia & histologia , Dente/anatomia & histologia , Animais , Tamanho Corporal , Feminino , Arcada Osseodentária/anatomia & histologia , Masculino , Análise de Componente Principal , Razão de Masculinidade , Especificidade da EspécieRESUMO
Tissue-based burdens of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were integrated with ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST) enzyme activity in bull (Carcharhinus leucas), blacktip (Carcharhinus limbatus), and bonnethead (Sphyrna tiburo) sharks from Galveston Bay, TX. The potential toxicity of these burdens was evaluated by calculation of toxic equivalents (TEQs). Concentrations of total PAHs (∑PAHs) were significantly greater in blacktip and bonnethead sharks than bull sharks in liver, but did not exhibit differences in muscle among species. Hepatic concentrations of ∑PAHs in these sharks (range of means: 1560-2200â¯ng/g wet wt.) were greater than concentrations previously reported in oysters from Galveston Bay (range of means: 134-333â¯ng/g dry wt.), which suggests that trophic dilution of PAHs may not be reflected in sharks. Total PCBs (∑PCBs) were significantly greatest in bull sharks and lowest in bonnetheads, while blacktips were intermediate to these species. EROD activity was greater in bonnetheads than the other species, whereas GST activity was significantly higher in blacktips and bonnetheads than in bull sharks. Integration of hepatic burdens with biomarker activity via constrained multivariate analysis found correlations for only a small number of individual PAH/PCB congeners. Hepatic TEQ measurements suggest potential physiological effects of these burdens compared to established TEQ thresholds for other taxa, although the likelihood of similar effects in sharks requires further study and the inclusion of toxic endpoints. Our findings indicate that sharks may be prone to the accumulation of PAHs and PCBs, which may result in negative health outcomes for these cartilaginous fishes.
Assuntos
Monitoramento Ambiental , Bifenilos Policlorados/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Tubarões/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Golfo do MéxicoRESUMO
Species exposed to extreme environments often exhibit distinctive traits that help meet the demands of such habitats. Such traits could evolve independently, but under intense selective pressures of extreme environments some existing structures or behaviors might be coopted to meet specialized demands, evolving via the process of exaptation. We evaluated the potential for exaptation to have operated in the evolution of novel behaviors of the waterfall-climbing gobiid fish genus Sicyopterus. These fish use an "inching" behavior to climb waterfalls, in which an oral sucker is cyclically protruded and attached to the climbing surface. They also exhibit a distinctive feeding behavior, in which the premaxilla is cyclically protruded to scrape diatoms from the substrate. Given the similarity of these patterns, we hypothesized that one might have been coopted from the other. To evaluate this, we filmed climbing and feeding in Sicyopterus stimpsoni from Hawai'i, and measured oral kinematics for two comparisons. First, we compared feeding kinematics of S. stimpsoni with those for two suction feeding gobiids (Awaous guamensis and Lentipes concolor), assessing what novel jaw movements were required for algal grazing. Second, we quantified the similarity of oral kinematics between feeding and climbing in S. stimpsoni, evaluating the potential for either to represent an exaptation from the other. Premaxillary movements showed the greatest differences between scraping and suction feeding taxa. Between feeding and climbing, overall profiles of oral kinematics matched closely for most variables in S. stimpsoni, with only a few showing significant differences in maximum values. Although current data cannot resolve whether oral movements for climbing were coopted from feeding, or feeding movements coopted from climbing, similarities between feeding and climbing kinematics in S. stimpsoni are consistent with evidence of exaptation, with modifications, between these behaviors. Such comparisons can provide insight into the evolutionary mechanisms facilitating exploitation of extreme habitats.