Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440758

RESUMO

Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination-which is critical for saltatory conduction and neuronal function-has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention.


Assuntos
Axônios/virologia , Doenças Desmielinizantes/etiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Biomarcadores , Traumatismos dos Nervos Cranianos/etiologia , Traumatismos dos Nervos Cranianos/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Ratos , Transcriptoma
2.
Acta Neuropathol Commun ; 5(1): 50, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645311

RESUMO

The recent global outbreak of Zika virus (ZIKV) infection has been linked to severe neurological disorders affecting the peripheral and central nervous systems (PNS and CNS, respectively). The pathobiology underlying these diverse clinical phenotypes are the subject of intense research; however, even the principal neural cell types vulnerable to productive Zika infection remain poorly characterised. Here we used CNS and PNS myelinating cultures from wild type and Ifnar1 knockout mice to examine neuronal and glial tropism and short-term consequences of direct infection with a Brazilian variant of ZIKV. Cell cultures were infected pre- or post-myelination for various intervals, then stained with cell-type and ZIKV-specific antibodies. In bypassing systemic immunity using ex vivo culture, and the type I interferon response in Ifnar1 deficient cells, we were able to evaluate the intrinsic infectivity of neural cells. Through systematic quantification of ZIKV infected cells in myelinating cultures, we found that ZIKV infection is enhanced in the absence of the type I interferon responses and that CNS cells are considerably more susceptible to infection than PNS cells. In particular, we demonstrate that CNS axons and myelinating oligodendrocytes are especially vulnerable to injury. These results have implications for understanding the pathobiology of neurological symptoms associated with ZIKV infection. Furthermore, we provide a quantifiable ex vivo infection model that can be used for fundamental and therapeutic studies on viral neuroinvasion and its consequences.


Assuntos
Bainha de Mielina/virologia , Neurônios/virologia , Tropismo Viral , Zika virus/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/patologia , Gânglios Espinais/virologia , Imuno-Histoquímica , Camundongos da Linhagem 129 , Camundongos Knockout , Bainha de Mielina/imunologia , Bainha de Mielina/patologia , Neurônios/imunologia , Neurônios/patologia , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Medula Espinal/imunologia , Medula Espinal/patologia , Medula Espinal/virologia , Infecção por Zika virus/patologia , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/virologia
3.
Cell Microbiol ; 19(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28273394

RESUMO

The Flavivirus genus (Flaviviridae family) contains a number of important human pathogens, including dengue and Zika viruses, which have the potential to cause severe disease. In order to efficiently establish a productive infection in mammalian cells, flaviviruses have developed key strategies to counteract host immune defences, including the type I interferon response. They employ different mechanisms to control interferon signal transduction and effector pathways, and key research generated over the past couple of decades has uncovered new insights into their abilities to actively decrease interferon antiviral activity. Given the lack of antivirals or prophylactic treatments for many flaviviral infections, it is important to fully understand how these viruses affect cellular processes to influence pathogenesis and disease outcome. This review will discuss the strategies mosquito-borne flaviviruses have evolved to antagonise type I interferon mediated immune responses.


Assuntos
Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interferon Tipo I/genética , Proteínas não Estruturais Virais/fisiologia , Animais , Culicidae/virologia , Infecções por Flavivirus/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Insetos Vetores/virologia , Interferon Tipo I/metabolismo , Ativação Transcricional/imunologia
4.
PLoS Negl Trop Dis ; 10(10): e0005048, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27706161

RESUMO

BACKGROUND: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. CONCLUSIONS/SIGNIFICANCE: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.


Assuntos
Genoma Viral , Interferon Tipo I/antagonistas & inibidores , RNA Viral/genética , Infecção por Zika virus/virologia , Zika virus/isolamento & purificação , Células A549 , Animais , Brasil/epidemiologia , Proteína DEAD-box 58/metabolismo , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Filogenia , RNA Viral/isolamento & purificação , Células Vero , Replicação Viral , Zika virus/genética , Zika virus/patogenicidade , Zika virus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA