Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 31(12): e4489, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36320105

RESUMO

As continuing discoveries highlight the surprising abundance and resilience of deep ocean and subsurface microbial life, the effects of extreme hydrostatic pressure on biological structure and function have attracted renewed interest. Biological small-angle X-ray scattering (BioSAXS) is a widely used method of obtaining structural information from biomolecules in solution under a wide range of solution conditions. Due to its ability to reduce radiation damage, remove aggregates, and separate monodisperse components from complex mixtures, size-exclusion chromatography-coupled SAXS (SEC-SAXS) is now the dominant form of BioSAXS at many synchrotron beamlines. While BioSAXS can currently be performed with some difficulty under pressure with non-flowing samples, it has not been clear how, or even if, continuously flowing SEC-SAXS, with its fragile media-packed columns, might work in an extreme high-pressure environment. Here we show, for the first time, that reproducible chromatographic separations coupled directly to high-pressure BioSAXS can be achieved at pressures up to at least 100 MPa and that pressure-induced changes in folding and oligomeric state and other properties can be observed. The apparatus described here functions at a range of temperatures (0°C-50°C), expanding opportunities for understanding biomolecular rules of life in deep ocean and subsurface environments.


Assuntos
Espalhamento a Baixo Ângulo , Difração de Raios X , Pressão Hidrostática , Raios X , Cromatografia em Gel
2.
J Chem Educ ; 99(1): 122-128, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605936

RESUMO

Historically, deaf and hard-of-hearing students (D/HH) who solely rely on an interpreter during organic chemistry lecture courses at the Rochester Institute of Technology consistently performed below the average in the class. A barrier attributed to this D/HH student performance is the lack of standardized methods in sign language to effectively communicate the organic chemistry terminology. As such, our group worked to address this challenge through a deliberate effort to develop a lexicon of insightful signs/classifiers that convey organic chemistry vocabulary as well as descriptive expansions to demonstrate challenging concepts. We will share our remarkable findings after the signs were developed and implemented, and the implications sign language incorporation in education could have on how we teach all students enrolled in STEM disciplines in the future.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29438289

RESUMO

This work investigates emissions sampling methods employed for qualitative identification of compounds in e-liquids and their resultant aerosols to assess what capture methods may be sufficient to identify harmful and potentially harmful constituents present. Three popular e-liquid flavors (cinnamon, mango, vanilla) were analyzed using qualitative gas chromatography-mass spectrometry (GC-MS) in the un-puffed state. Each liquid was also machine-puffed under realistic-use flow rate conditions and emissions were captured using two techniques: filter pads and methanol impingers. GC-MS analysis was conducted on the emissions captured using both techniques from all three e-liquids. The e-liquid GC-MS analysis resulted in positive identification of 13 compounds from the cinnamon flavor e-liquid, 31 from mango, and 19 from vanilla, including a number of compounds observed in all e-liquid experiments. Nineteen compounds were observed in emissions which were not present in the un-puffed e-liquid. Qualitative GC-MS analysis of the emissions samples identify compounds observed in all three samples: e-liquid, impinge, and filter pads, and each subset thereof. A limited number of compounds were observed in emissions captured with impingers, but were not observed in emissions captured using filter pads; a larger number of compounds were observed on emissions collected from the filter pads, but not those captured with impingers. It is demonstrated that sampling methods have different sampling efficiencies and some compounds might be missed using only one method. It is recommended to investigate filter pads, impingers, thermal desorption tubes, and solvent extraction resins to establish robust sampling methods for emissions testing of e-cigarette emissions.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Aerossóis , Aromatizantes/química , Pesquisa Qualitativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA